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Abstract
With increasing amounts of data available on the web and a
more diverse range of users interested in programmatically
accessing that data, web automation must become easier.
Automation helps users complete many tedious interactions,
such as scraping data, completing forms, or transferring data
between websites. However, writing scripts to complete these
tasks typically requires a programmer to reverse engineer
the target webpage. While the underlying implementations
of many webpages constantly change, we note that the user-
facing interfaces remain relatively stable. We have built a
record and replay tool called Ringer to capitalize on this
insight. Taking a user demonstration as input, Ringer creates a
script that interacts with the page as a user would, eliminating
the need for reverse engineering. We evaluated our approach
on benchmarks recorded on real webpages and found that it
replayed 4x more benchmarks than a state-of-the-art tool.

Categories and Subject Descriptors H.5.3 [Group and Or-
ganization Interfaces]: Web-based interaction

General Terms Design, Languages

Keywords Record-Replay, Automation, Javascript, Browser

1. Introduction
Programmatic access to user-facing websites serves a range
of purposes: news readers reformat news articles for cleaner
access (e.g., Readability [3]); end-users automate tedious in-
teractions with webpages (e.g., IFTTT [1]); and data scientists
scrape data for their studies and journalists for their stories

(the investigative news organization ProPublica hires pro-
grammers to develop web scrapers [2]). Overall, the interest
in web automation is growing: the number of StackOverflow
questions on “scraping” grew by 16% in 2014 and 23% in
2015 [34], and commercial scrapers such as Kimono [25] and
import.io [22] appeared during the last three years.

Since some websites do not offer APIs, accessing their
pages programmatically requires reverse engineering the
pages’ DOM tree structures and event handlers. Program-
matic access must account for future changes to the webpage,
such as updated data or website redesigns. Additionally, on
websites that actively attempt to prevent automated scraping,
the programmer must work around obfuscation. For instance,
pages may wait to load the complete data until a user clicks a
"More" button. Modern user interfaces, such as Facebook’s
“infinite scrolling” feature, add to the complexity of automat-
ing web access.

We describe Ringer, a record and replay system that pro-
duces web automation scripts from end-user demonstrations.
Ringer is based on the observation that while the internals
of a webpage may change, the user-facing interface tends to
remain stable in order to maintain a consistent user experi-
ence. Reliable automation can thus be achieved by invoking
actions at the level of the user-visible interface.

Given a user demonstration, Ringer produces a script that
approximates the user’s intended program. The script is a
sequence of statements of the form “wait for a condition C,
then perform an action a on a webpage element e.” It records
the sequence of actions in the demonstration. For each action,
it produces a condition and an element selector that make the
script robust to certain types of webpage changes.

Using the inferred script, non-programmers obtain access
to web automation. Using Ringer, we built an example
application that lets users author a homepage with custom
“live information tiles.” Users record how to scrape the day’s
flavors at their local ice cream shop, today’s open hours
at their pool, or their current commute time; the custom



homepage replays those interactions to display up-to-date
information.

Ringer benefits expert programmers, too, because record
and replay obviates the need for tedious reverse engineering.
Programmers can simply record an interaction and then
modify the resulting program or embed it into a larger
application. For example, WebCombine [14], a tool built
using Ringer, lets a user scrape large datasets from highly
structured websites. The user demonstrates how to scrape one
row of the dataset, and WebCombine modifies the resultant
Ringer program to scrape all other rows of the dataset.

Replaying recorded actions may appear simple, but fun-
damental challenges make it difficult to mimic a human user,
both spatially (selecting the element for an action) and tem-
porally (determining the conditions under which the page is
ready for the action).

To solve the spatial problem we must define a reliable
correspondence between demonstration-time elements and
replay-time elements. Given a new version of a webpage, we
seek the element that a user would select to re-demonstrate the
interaction. Existing solutions [6, 27, 36] are fragile because
they require a few key element attributes to remain stable.
In contrast, our approach selects the replay-time node that
maximizes a similarity metric. A longitudinal study of 30
webpages found that after 37 days our approach still identified
83% of nodes, 22 percentage points more than the next best
approach.

To solve the temporal problem we must determine when
the webpage is ready for the next user action. Modern interac-
tive webpages often use visual cues, like showing a loading
bar, to signal that they are waiting for responses from a server.
An impatient user (or a naive replay tool) might ignore the
cue and use stale data, producing unexpected behaviors. Al-
though these visual cues are intuitive to humans, existing
replay techniques have not identified them programmatically.
Ringer infers the condition that must be met before each script
action can run. We empirically show that these conditions
make Ringer programs robust to pages with asynchronous
communication and add the benefit of being on average more
than 2.5x faster than the user’s demonstration.

To evaluate Ringer as a whole, we developed a suite of 34
interaction benchmarks. We compared Ringer to CoScripter,
an existing end-user replay tool, and found that CoSripter
replayed 6 (18%) benchmarks, while Ringer replayed 25
(74%). We also tested how well Ringer handled page changes
by rerunning Ringer scripts over a three-week period. Of the
24 benchmarks that ran initially, 22 (92%) continued to run
at the end of the testing period.

To set expectations for how well a replayer can perform,
we must acknowledge that sites are free to modify their
pages arbitrarily at any time. To counteract the inherent best-
effort nature of the replay problem, Ringer uses previously
developed techniques [23] to specify checkpoints, i.e., text
that must appear on a page. We use these checkpoints to

increase the confidence that replay has not diverged and as a
correctness condition when evaluating Ringer.

This paper makes the following contributions:

• A record and replay approach to webpage automation that
mimics a user’s interactions. We record scripts that use
three constructs: actions, elements and trigger conditions.

• A node-addressing algorithm based on similarity that
identifies elements across multiple webpage accesses.

• An algorithm that generates trigger conditions by observ-
ing multiple replay executions.

This paper is organized as follows. Section 2 introduces
the challenges of automating websites and the approaches
Ringer takes to solve them. Ringer’s core language features
are presented in Section 3, with the temporal problem dis-
cussed further in Section 4 and the spatial problem discussed
further in Section 5. Section 6 details Ringer’s implementa-
tion, and Section 7 details its limitations. In Section 8, we
present an evaluation of Ringer on a set of benchmark web-
sites. Finally, Section 9 offers a discussion of related work.

2. Overcoming Challenges in Web
Automation

Using a running example, we describe the inherent challenges
of current web automation approaches (Sections 2.1 and 2.2)
and how Ringer addresses these challenges while making
automation accessible to end users (Sections 2.3 and 2.4).

2.1 Web automation scripts written by programmers

Consider the task of searching Amazon for a given camera
model, selecting the silver-colored camera from a list of color
options, then scraping the price. Perhaps a user wants to auto-
mate this process to detect when the price drops below a fixed
amount. The interest in such data is strong; Camelcamel-
camel [9], which lets end-users track Amazon prices, has
more than 180,000 users [21]. Although programmers have
built such tools for mainstream retailers like Amazon, users
cannot rely on programmers to develop price scraping tools
for their favorite niche sites, so we anticipate a continuing
need to develop such scripts.

How would one write this price-scraping script? A pro-
grammer first studies the Amazon page to reverse engineer
it, learning how to programmatically access data on the page
and what events must occur to load the data. We show screen-
shots of this task in Figure 1 and diagram the sequence of
events between browser components in Figure 1e. After pro-
ducing a first draft of the script, the programmer tests it over
the next few days, to adapt the script to the inevitable page
changes. The final result resembles the Selenium script shown
in Figure 2.

The programmer must first determine how to programmat-
ically access webpage elements (DOM tree nodes), such as
the silver camera button, which lacks a node ID. Finding a
suitable selector requires examining the DOM tree and iden-



(a) Page of black camera. (b) After hover on silver button.

(c) After click (grayed page). (d) Page of silver camera.
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Figure 1: Amazon price scraping interaction. Each circle in (e) corresponds to a webpage state shown in (a-d). Note that hovering
over the silver option instantly displays the silver camera picture but not its price. Only after the click does the page request the
silver price from the server and overlays to gray. The response updates the price and removes the gray overlay.

1 driver = webdriver.Chrome()
2 driver.get(amazonURL)
3 # Find the silver button
4 button = driver.find_elements_by_xpath(’//img[@alt="Silver"]’)[0]
5 button.click() # Mimic the user clicking the button
6 # Wait until the product title contains the color name
7 WebDriverWait(driver, 10).until(
8 EC.text_to_be_present_in_element(
9 (By.ID, "productTitle"), "Silver"))

10 price = driver.find_element_by_id("priceblock_ourprice")
11 print price.text # Print out price of item

Figure 2: Selenium script to scrape the cost of a silver camera
from Amazon.com.

tifying features of the target node that both uniquely identify
it and remain constant over multiple page accesses. For the
silver camera image, the programmer notices that the alt field
is always “Silver” and uses this insight to identify the element
with the XPath expression in line 4.

The programmer must also notice the asynchrony: the
script cannot scrape the price immediately after clicking
the “Silver” button. Doing so would yield the price of the
previously selected black camera. This incorrect outcome
occurs because the page responds to the click by requesting
the silver camera’s price from the server. The page grays
out the content as a visual cue (Fig. 1c) to convey that the
displayed information is invalid and a request is pending.
Surprisingly, the page still lets the user interact with the stale
information. For example, a user clicking the “Add to cart”
button during this period will add the black camera, after
already having clicked on the silver one.

The programmer must devise a wait condition to iden-
tify when the silver camera’s price becomes available. The
standard approach of waiting for the relevant DOM node to

appear does not work in this case because the node is present
throughout. The alternative approach of adding a fixed-time
wait may break when the server is especially slow. For the
Figure 2 example, the programmer opted to carefully mon-
itor the page changes to determine that the page was ready
for scraping when the product title included the word “Sil-
ver” (line 7-9). This page-specific condition requires reverse
engineering that is likely inaccessible to end users.

2.2 Web automation script failures

In general, one writes web automation scripts for tasks that
must be performed many times. Therefore, scripts should be
usable for as long as possible. However, today’s webpages are
in a constant state of flux, which makes this goal a challenge.
They are frequently redesigned; they undergoing A/B testing;
and they present breaking news, user-generated content, and
other data with high update rates. Many pages are minimized
or obfuscated, using new identifiers for their DOM nodes
during each reload. In short, the server-side code, the DOM
structure and contents, and the JavaScript code can change at
any time.

As an example, consider the Amazon task. The Selenium
script used the expression driver.find_element_by_id("price
block_ourprice") to find the current product price (line 10).
Although this may seem like an intuitive approach – it uses
an ID, which should uniquely identify the node – low-level
attributes like this are prone to change. During one 60 second
interaction with the Amazon page, we logged 1,499 ID
modifications and 2,419 class modifications. These changes
were caused by scripts running on the page without the page
even reloading! Similar changes can likewise occur during
A/B testing or page redesign. These low-level attributes are
imperceptible to the user. So, while a user can continue
interacting normally, selectors that use low-level attributes
may not find the correct element, causing the script to fail.



2.3 Ringer’s approach

Amazon example in Ringer. A Ringer user starts a record-
ing, interacts with the browser as usual, then stops the record-
ing. From the user’s perspective, the experience of recording
how to complete a task is exactly the same as the experience
of completing the task.

During recording, Ringer logs each action (DOM events
such as mouseup, keydown, etc.) that the user makes and the
nodes on which those actions are performed. Here is part of
the trace generated from the previously described Amazon
recording:

1 observed mousedown event on an image node
2 observed mouseup event on an image node
3 observed click event on an image node
4 observed capture event on a span node

To turn this trace into a script, Ringer records hundreds of
attributes for each node in the trace. At replay time, the script
identifies the node in the target page that most resembles
the record-time node. That is, it gives each node a similarity
score based on how many of its attributes match the original
node’s attributes, then selects the highest scoring node. After
the recording stage, the script looks like this:

1 dispatch action mousedown on node matching {type: ’IMG’, ...}
2 dispatch action mouseup on node matching {type: ’IMG’, ...}
3 dispatch action click on node matching {type: ’IMG’, ...}
4 dispatch action capture on node matching {type: ’SPAN’, ...}

While the hand-written script presented in Sec. 2.1 breaks
if the price node’s ID changes, Ringer’s approach still selects
the correct node. The ID is only one of the hundreds of
features Ringer uses. Even with this one feature modified,
Ringer will likely find the correct node.

This similarity approach succeeds in part because it re-
sembles how a user finds nodes in a webpage. The user does
not have a fixed rule in mind for finding the price node but
rather looks for a node in more or less the same place as its
last position or a node similar to those used in the past. This
likeness may be influenced by many features – the price’s
font size, its position on the page, its proximity to other in-
formation. Like a human user, Ringer takes advantage of
all these features. Even though we cannot predict the subset
ahead of time, some subset of the features typically remain
stable since the developer wants to keep the user experience
consistent.

At this point, the Ringer program contains actions and
reliably identifies nodes, so it can be executed. However, it
will not pause between clicking the button and scraping the
price, so it will scrape the wrong data.

To learn when to dispatch an action, Ringer replays the
script several times, mimicking the user’s timing. Since server
response times vary, some of these replays may fail, but some
succeed. Whether an execution is successful depends on the
user’s goals. To automatically detect successful executions,
the user must select invariant text that should appear during a
successful replay. For the Amazon example, the user would

select the title “Sony W800/S 20 MP Digital Camera (Silver)"
at the end of the interaction. Ringer saves a trace of each
successful replay. Each saved trace includes the relative
ordering of actions and server responses during a successful
execution.

Ringer then uses these execution traces to infer which
server responses must arrive before Ringer can successfully
replay an action. The URLs of server requests – and even the
number of requests – may vary from run to run, so Ringer
uses URL features to identify important server responses
across runs. After this trigger inference process, the final
script looks like this:

1 dispatch action mousedown on node matching {type: ’IMG’, ...}
2 dispatch action mouseup on node matching {type: ’IMG’, ...}
3 dispatch action click on node matching {type: ’IMG’, ...}
4 wait−until server response matching hostname==’amazon.com’ &&
5 path==’ajaxv2’ && params.id==’bar’:
6 dispatch action capture on node matching {type: ’SPAN’, ...}

The attentive reader will notice that while a user reacts to
visual hints, Ringer reacts to server responses. Visual changes
happen at such a rapid rate that it is difficult to isolate the
changes associated with successful runs. Instead, we use
server responses as a proxy for visual changes. This lets
us approximate user triggers without having to ask users to
identify specific visual cues.

2.4 Generalization of scripts

Ultimately, we expect that Ringer will be used as a building
block for more expressive end-user programming tools that
will adapt Ringer scripts to their needs. We provide an API
that lets programmers embed Ringer scripts into other pro-
grams and modify the scripts [14]. Our API lets programmers
parametrize a script to interact with different nodes, to type a
different string, and to open a different URL. For example,
a programmer can force the script to choose a certain node
by replacing the recorded feature set with a set that uniquely
identifies the new node. Programmers building end-user pro-
gramming tools can use this API to repeat many variations
on a given interaction.

For a simple example of generalization, consider a user
who records how to select an item from a pulldown menu,
then clicks a search button. A tool could run this script inside
a loop, each time altering the script to select a different node
from the menu. A more advanced generalization tool might
go further, letting the user identify a relation on a set of
webpages, then applying a Ringer script to all rows to scrape
large and interesting datasets. In fact, WebCombine [14], a
relational web scraper targeted at non-programmers, has used
Ringer to do exactly this.

3. Language Design
When a human user interacts with the browser during the
recording phase, we assume that user is executing an implicit
program, in which each statement takes the form "wait
for X , then do Y on Z." The goal of replay is to mimic



this intended user program. We propose that to faithfully
replay this program, a replayer needs the following language
constructs:

• Actions: means by which a replayer affects an application
• Elements: components of an application interface on which

actions are dispatched
• Triggers: expressions that control when an action occurs

For pure record and replay, we assume the intended user
program is a straight-line sequence of statements. Each
statement takes this form:

1 wait−until triggers t1, t2, ... tn are satisified:
2 dispatch action a on element e

To execute this statement, Ringer waits until all trigger
conditions, t1, . . . tn, are satisfied. It then waits until an
element on the page matches element e, at which point it
dispatches the action a on the element.

3.1 Abstractions

This formulation gives us a program structure but does not
specify what abstractions to use for the action, element, and
trigger constructs. We use the following abstractions:

• Actions: Ringer records users’ interactions as DOM events.
DOM events are how scripts on the page listen for and
respond to user interactions.

• Elements: DOM events are dispatched on DOM nodes, so
Ringer must identify a matching DOM node on the replay-
time webpage. It attempts to mimic the user through a
similarity metric rather than using a fixed expression.

• Triggers: It is difficult to distinguish which cues are im-
portant. Often, visual cues occur in response to server re-
sponses. Therefore, Ringer uses server responses as triggers
to approximate visual cues.

While it is highly unlikely that a human user applies these
exact abstractions, these abstractions directly control the
information a human receives from a webpage and are
therefore a good fit for our user-imitation approach.

3.2 Ringer System Architecture

With this language in place, we can build the full record and
replay system, pictured in Figure 3, to produce scripts in the
Ringer language from user demonstrations.

Recording. During recording, Ringer observes all DOM
events, and the DOM-level features of all involved nodes.
This trace is the input to our trigger inference algorithm,
which uses it to produce a set of successful execution traces.
From these traces, we infer a set of server response triggers
for each action, which we use to construct the final program.

Replay. During replay, Ringer executes each statement.
It first checks if all trigger expressions are satisfied by
comparing each expression to the list of server responses
observed thus far. Once all expressions are satisfied, the
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Figure 3: Ringer architecture. The Ringer replayer becomes
a replacement user. We highlight and underline the messages
used to monitor and control the browser. Ringer directly pro-
duces DOM events to mimic user interactions and observes
HTTP responses directly.

replayer uses the DOM features to identify a node and then
dispatches the DOM event on that node.

4. Trigger Inference
As a human uses visual cues to synchronize with webpages,
Ringer must also synchronize. Without synchronization, an
execution could scrape the wrong information, like the Ama-
zon scraping script from Section 2; or, worse, it could silently
cause undesired side-effects on a page. To solve this prob-
lem, we infer triggers, which pause replay execution until the
webpage is ready for the next action.

4.1 Design rationale

The simplest triggers wait a fixed amount of time, but this
approach makes scripts slow and susceptible to network
delays. The most user-like option is to look for visual cues
to construct expressions like line 4 in Figure 2. However,
the high frequency of visual changes makes it difficult to
isolate relevant cues. The Amazon example uses a page that
contains over 4,000 nodes, and more than 600 DOM changes
occur after the user clicks the button, only a few of which are
associated with page readiness. The large number of nodes
and changes creates a large space of candidate expressions.

Instead of using visual cues, we look to what pages are
usually signaling with these cues, i.e., outstanding server
requests and responses. The Amazon page contains only
35 such responses, so inferring response-detecting trigger
expressions is feasible.

4.2 Example

To infer trigger expressions, Ringer must: (i) align server
responses across multiple replays, and (ii) identify trigger-
dependent actions. We could find no existing algorithms for



this problem and therefore designed a simple but effective
one.

We illustrate our approach on a simplified version of the
Amazon example. Initially, the user provides a demonstration
of the interaction, creating a simple script with two actions:

action a1 click silver button
action a2 scrape price

The user must also provide a correctness condition so that
Ringer can automatically detect when a replay is successful.
The user does this by selecting the title text,“Sony W800/S
20 MP Digital Camera (Silver),” as an invariant, indicating
that any successful execution must display this text. Ringer
then automatically (without user intervention) replays this
script. During these training-time replays, Ringer mimics the
user’s timing, so we call these naive replays. Ringer continues
to replay the script until it has observed two successful
executions:

action a1 click silver button
response r1 www.amazon.com/ajaxv2?rid=foo&id=bar
response r2 www.amazon.com/impress.html/ref=pba
action a2 scrape price

action a1 click silver button
response r3 www.amazon.com/ajaxv2?rid=baz&id=bar
action a2 scrape price
response r4 www.amazon.com/impress.html/ref=pba

Aligning server responses. To infer the dependency re-
lation, we must identify common server responses across
multiple traces. We use URLs’ hostnames and paths for
this purpose. For our example, we identify r1 and r3 as
the same response even though the URLs differ (with dif-
ferent rid parameters) since they share a hostname and
path. To increase precision, we incorporate the URL pa-
rameters that remain constant, such as the id parameter.
Thus, the final expression that identifies the r1 and r3 re-
sponses is: hostname==’amazon.com’ && path==’ajaxv2’
&& params.id==’bar’.

Identifying trigger-dependent actions. Ringer must also
infer which server responses an action requires. Let t1 and t2
be the trigger expressions that identify {r1, r3} and {r2, r4},
respectively. With these traces, Ringer can safely infer that a2
depends only on t1. Since the second trace shows a successful
execution in which a2 was dispatched before r4, it is clear a2
does not depend on t2.

Some assignments of trigger expressions to actions cause
more synchronization than others. If Ringer observes only
the first trace, it cannot eliminate the possibility that a2
depends on t2: it would associate a2 with both t1 and t2. This
suffices to replay the script, but it causes Ringer to wait for t2
unnecessarily. In a better program, with less synchronization,
a2 waits only for t1. Given the second trace, Ringer can infer
this better program.

ADDTRIGGERS(actions : List[Action], runs : Set[List[Event]])

1 mapping : Map[Action, Set[Trigger]]← {}
2 used : Set[Trigger]← {}
3 for action : Action← actions do
4 responses : Set[List[Event]]← {}
5 for run : List[Event]← runs do
6 prefix : List[Event]← run.slice(0, run.indexOf(action))

7 all : List[Event]← prefix.filter(isResponse)

8 unmatched : List[Event]← REMOVEMATCHED(all, used)

9 responses← responses ∪ {unmatched}
10 triggers : Set[Trigger]← INFERTRIGGERS(responses)

11 mapping ← mapping ∪ {action→ triggers}
12 used← used ∪ triggers

13 return mapping

Figure 4: Algorithm to associate actions with necessary
triggers using a set of successful executions.

4.3 Identifying trigger-dependent actions

We developed our trigger inference algorithm around one key
insight: if an action a depends on a response r, then r must
appear before a in all successful traces.

Our algorithm seeks to add triggers to a Ringer program so
that the script never fails due to an action being replayed early.
This correctness condition is met if the trigger expressions
added by our algorithm enforce all dependencies between
responses and actions. The secondary goal is to minimize
the delay caused by the triggers. We should avoid waiting
for a server response unless the action must come after the
response.

The input to Ringer’s trigger inference algorithm is a
sequence of actions (a Ringer script without triggers) and a
set of successful traces. Each successful trace is a sequence of
actions and responses. The output is a mapping from actions
to the triggers they require.

For each action, the algorithm identifies the set of server
responses that occur before the action in all passing traces.
The only proof that no dependency between an action and a
response is a successful run in which the action precedes the
response. Therefore, we conservatively assign a maximal set
of trigger expressions.

The ADDTRIGGERS algorithm in Figure 4 iterates over
all actions (line 3), identifying the responses that happen
before the current action in each execution (lines 6 to 7).
It then removes responses that are already associated with
previous actions (line 8). We run INFERTRIGGERS on the
remaining responses (line 10). INFERTRIGGERS returns a set
of trigger expressions, one for each semantically equivalent
server response that appeared in all executions. For instance,
from our earlier example, we would run INFERTRIGGERS
on [r1, r2], [r3], and it would produce t1, the set containing
a trigger expression that corresponds to r1 and r2. Finally,

www.amazon.com/ajaxv2?rid=foo&id=bar
www.amazon.com/impress.html/ref=pba
www.amazon.com/ajaxv2?rid=baz&id=bar
www.amazon.com/impress.html/ref=pba


trigger := host && path && type (&& params)∗ (&& order)?
host := hostname == string
path := path == string
type := type == (GET | POST)
params : params.string == string
order := isAfter(id)

Figure 5: Grammar of response identification expressions.

we map the current action to the set of trigger expressions
(line 11), and the loop continues.

4.4 Aligning server responses

To use server responses as triggers, we must find expressions
that identify them across multiple executions. This is difficult
because different URLs can represent semantically equivalent
responses. For example, a response can use a different session
ID parameter for each execution. We also cannot assume
that all server responses seen in one execution will occur
in another. The goal is to produce an expression flexible
enough to identify semantically equivalent responses despite
variations of the URL, but restrictive enough to not also
identify semantically different server responses that can have
similar URLs.

Ringer infers trigger expressions in the grammar shown
in Figure 5. We use features of server responses’ URLs,
including the hostname, path, query parameters, and type
of response. A trigger expression evaluates to true if Ringer
witnesses a server response that matches each URL feature in
the expression. If the trigger expression contains an isAfter(id)
clause, then Ringer must receive the response after executing
action id.

Our INFERTRIGGERS function takes lists of responses as
input. Each list contains responses from a single trace that
were not used as triggers for any previous action. For instance,
in the Amazon example, the list was [r1, r2], [r3]. The output
is a set of trigger expressions, one for each semantically
equivalent response that occurs in all input lists. In this
example, r1 and r3 were equivalent.

To produce the output trigger expression, we must first
identify which responses are semantically equivalent. Our
algorithm makes a (hostname, path, type) tuple for each
response and checks whether any response tuple appears
in all input lists. If it does, the algorithm produces a trigger
expression for this set of responses, including all parameters
that the URLs have in common.

If a given trigger expression has already been used to iden-
tify a previous response, we add an isAfter clause, indicating
that this trigger applies only after a previous event. This en-
sures that a single response does not satisfy more than one
trigger expression.

4.5 Assumptions

Our approach relies on four core assumptions.

1. Slow is safe. We assume that it is always acceptable to
delay an action, but that replaying it too early could cause
failures. Since human users may be slow to react, this
assumption holds on almost all pages we examined.

2. Arbitrary waits are rare. Our approach cannot handle
interactions that demand waits of arbitrary time periods
(e.g., interactions with JavaScript’s setTimeout). Since
users are impatient, it is rare for developers to add such
waits.

3. Correctness criteria have no false positives. Believing
a failing trace is successful can lead our algorithm to elim-
inate required dependencies. Therefore, the correctness
criterion must accurately determine whether an execution
is successful.

4. We can collect enough traces. Because we prioritize cor-
rectness, Ringer never eliminates a dependency between
a response and an action without witnessing it to be su-
perfluous. If we observe too few executions, Ringer could
produce scripts that wait unnecessarily. Even with our con-
servative approach and two or three successful traces, we
can significantly reduce replay execution time (Sec. 8.3),
so it is important that we be able to collect enough traces
to eliminate potential response-action dependencies. An-
other danger is that our inferred trigger expressions could
overfit a small number of input traces, causing Ringer
to ignore semantically equivalent responses. We handle
these cases by adding a timeout, so that replay eventually
continues even if no server response matches an overfit
trigger expression.

5. Node Addressing
Every action observed during a recording is enacted on a
node. For a replay script to execute correctly, it must dispatch
the action on the corresponding replay-time node.

5.1 Problem statement

The DOM is a tree of nodes. A node maps attributes to values.
At time t1, we load url u, which yields DOM tree T , and we
observe a given node with m attributes n = 〈a1 : v1, ..., am :
vm〉 in T . At time t2, we load u, which yields DOM tree T ′,
and must identify the node n′ ∈ T ′ that a user would identify
as corresponding to n ∈ T .

This problem is difficult because T ′ can be arbitrarily
different from T . The structure of T , the attributes of n, and
the attributes of other nodes in T could all change. In the limit,
T ′ could have a wholly different structure than T and not
have any common nodes with T . If this happened regularly,
identifying nodes would be almost impossible. However, this
would also make replay difficult for human users. The need
to offer a consistent user interface suggests that in practice
there is often substantial similarity between the DOM trees
of the same page loaded at different times.



5.2 Past approaches

Past record and replay tools and node addressing algorithms –
such as iMacros [6], ATA-QV [36], XPath relaxation [15, 17,
26] and CoScripter [27] – solved the problem by selecting at
record time what features they would require at replay time.
Given T and n, these node addressing algorithms construct
a function f such that f(T ) = n. To find a corresponding
node on a new page T ′, they apply f , proposing f(T ′) as
n′. Typically, f uses some combination of the attributes of n.
Based on the designer’s insights into how webpages change,
they select a few important attributes that uniquely identify n
in T .

To make these approaches more concrete, we briefly
describe two such node addressing algorithms. The iMacros
[6] approach records the text of n and an index attribute – the
number of nodes before n in T that have the same text. The
combination of text and index uniquely identifies n in T and
produces at most one node in any other DOM tree.

The ATA-QV algorithm [36] is more complicated. At
record time, it finds all nodes with the same text attribute
as n. It then compares the subtrees containing these nodes to
find text nodes that exist in n’s subtree but not in others. It
recursively accumulates a list of these disambiguating texts,
which let it uniquely identify n in T , although they may not
guarantee a unique output on variations of T . Thus, for ATA-
QV, the text within a node’s subtree serves as the crucial
attributes. At replay time, ATA-QV finds the node whose
subtree includes the target set.

5.3 Our approach

Rather than constructing a function f : T → n at record time
that discards most information about n, our approach builds
a function SIMILARITY for measuring the similarity between
two nodes. At record time, we save n. At replay time, for
each candidate node nc ∈ T , we run SIMILARITY(n, nc).
The node with the highest score is selected.

Past tools calculate a small set of features at record time
and require that they all match during replay. This assumes
that all of these features will remain stable. In contrast, our
approach requires that only some subset of features match.

The features we use include per-node features: attributes of
the node object; getBoundingClientRect features, like width;
getComputedStyle features, like font; and portions of the
node text. In addition, we also include many features with
information about the surrounding subtree: selected XPath
and XPath-like expressions and features of parent, child, and
sibling nodes. These latter features let Ringer use the context
of the original node to find a similar node.

We constructed three similarity algorithms. All take the
same basic form, applying the core SIMILARITY algorithm
in Fig. 6. For each attribute a in the set of all attributes, if
n[a] == nc[a], the score is incremented by the attribute’s
weight. The node with the highest score is the output node.

SIMILARITY(weights : Map[Attribute,Weight],
n : Map[Attribute, V alue], nc : Map[Attribute, V alue])

1 score : Number ← 0

2 for attribute : Attribute← n do
3 if n[attribute] == nc[attribute] do
4 score← score+ weights[attribute]

5 return score

Figure 6: Algorithm to calculate the similarity of candidate
node nc to node n.

Each variation of the SIMILARITY algorithm uses different
weights. The first algorithm weights all attributes equally.
For the second and third algorithms, we produced weights
using machine learning, one using linear regression and one
using SVM with a linear kernel (details in Appendix A).
Surprisingly, we found that the algorithm that weighted
all attributes equally achieved the best performance. This
result indicates that past changes to a website are not good
predictors of future changes and supports our claim that using
a fixed set of features is fragile.

5.4 Benefits of our approach

The key benefit of our approach is an increased robustness
to page changes over time. As detailed in Sec. 5.2, past
approaches rely on each feature in a small subset of features to
remain stable over time. The chosen features are essentially
a heuristic, guided by the designers’ instincts about how
pages change over time. Unfortunately, even when designers
choose a good subset that has been consistent in the past,
past performance does not guarantee that they will remain
consistent in the future.

Let us consider how past techniques handle the Amazon
task. The user’s goal is to scrape the price as it changes over
time. How do the iMacros and ATA-QV node addressing
techniques identify the price node? Both techniques first filter
for nodes with the original node’s text, which is the price
observed during recording – the stale data! If the price has
changed, there is no such node, and the tools fail.

In contrast, our similarity approach loses only one match-
ing attribute when the price text changes. reducing the simi-
larity score by only one. Other attributes – from background
color to font family, border thickness to node height – still
match the original node. So even as the price changes, our
similarity-based approach finds the correct price node.

6. Implementation as a Chrome Extension
Ringer is implemented in JavaScript, which offers portabil-
ity, and is distributed as a stand-alone Chrome extension,
which offers easy deployment. We made our code publically
available at https://github.com/sbarman/webscript.

Recording and Replaying Actions. Ringer records actions
by recording DOM events. To intercept and log each event,

https://github.com/sbarman/webscript


our Chrome extension content script adds Ringer’s event lis-
teners to all important DOM events before the recorded page
loads. (By default, we exclude high-frequency mousemove,
mouseover, and mouseout events although these could be
enabled as desired.) Our listeners are called during the cap-
ture phase so that they are executed before other listeners;
any listener could suppress the execution of later listeners,
which would hide events from the recorder.

At replay time, we recreate the observed events and raise
them with the dispatchEvent function, carefully handling two
subtleties. First, the browser distinguishes between events
dispatched natively (i.e., via user interactions) from those
dispatched from a JavaScript program, including from an
extension. The former events are trusted and are allowed
to cause side-effects; some effects of the latter are ignored.
For example, clicking a checkbox node n with a mouse sets
n.checked to true. In contrast, dispatching the click event
to n from JavaScript has no effect on n.checked.

Second, the replayer must avoid breaking an implicit
invariant established by JavaScript’s single-threaded and
non-preemptive semantics. In particular, the browser dis-
patches some consecutive events atomically, preventing non-
related events from executing their handlers within the atomic
block. One such group of events is keydown, keypress,
textInput and input. We found that at least one website
(Southwest.com) relied on this behavior: An early version of
our replayer allowed a scheduled function to be executed in
the midst of an atomic block. As a result, the autocomplete
menu triggered by the typing did not use the last character
the user typed.

To handle these challenges, we developed a runtime
system that actively corrects any inconsistencies between
when an event is recorded and when it is replayed. Details
of this system are beyond the scope of this paper but can be
found in [11].

Observing Triggers. Ringer uses the Chrome webRequest
API to receive notifications of all requests to the server as
well as all server responses. During recording, we use these
notifications to collect the set of candidate triggers. During
replay, we use these notifications to identify when triggers
have fired. Ringer does not control when the browser sends
or receives a request. Instead, during replay, Ringer delays
dispatching events to control the order of actions relative to
server notifications; this is the trigger mechanism described
in Section 4.

Identifying Nodes. Ringer’s event listeners also record in-
formation about the event’s target node and relevant adjacent
nodes. Attributes of these nodes are used in Ringer’s node
addressing algorithm. The recorded information includes a
mix of XPath expressions, CSS selectors, text, coordinates,
traversals of the DOM tree, and many other features.

7. Limitations
We now review the limitations of Ringer’s components.

Actions. Some DOM events – for example, mousemoves,
mouseovers, and mouseouts – occur at a very high rate.
Because JavaScript is single-threaded, the same thread that
records and replays each event must also processes webpage
interactions, so recording the very large number of high-
frequency events can make pages slow to respond. Therefore,
Ringer does not record these events unless high-frequency
mode is explicitly turned on by the user. For most pages we
encountered, these events were unnecessary.

Elements. The similarity-based node addressing approach
is inherently best-effort. We obtain no theoretical guarantees
but find in practice that the approach is sufficient.

Triggers. The Ringer approach was designed for interac-
tions that satisfy the trigger assumptions (see Section 4.5).
Ringer fails when these do not hold. For instance, Ringer is
not intended to target interactions that require precise abso-
lute times between actions, such as most games. As a concrete
example, consider Google Maps, which calculates “inertia”
during map movements to continue scrolling even after the
user releases the click. It does so by using the time between
mouse movement actions. Since Ringer does not reproduce
exact times between actions, it cannot replay this interaction.

Another possible source of failures is client-side delay,
such as delays from animations, timeouts, or the use of
browser-local storage. Since these delays do not occur be-
cause of server requests, Ringer’s trigger algorithm will not
infer them. In practice, we have not observed websites that
fail because of client-side delays.

8. Evaluation
We start with an end-to-end comparison of Ringer and
CoScripter, another by-demonstration replayer for end-user
programming. We show that our design decisions make
Ringer more reliable on modern websites (Section 8.1). We
also examine how well Ringer handles page changes by
executing Ringer scripts repeatedly over a period of three
weeks (Section 8.2). We evaluate the components of replay
in isolation, showing that triggers are indeed necessary for
correct replay (Section 8.3). We evaluate node identification
in isolation from the full Ringer system, showing that it
outperforms existing algorithms in robustly handling page
changes over time (Section 8.4).

Benchmarks. We designed a benchmark suite consisting of
one web navigation scenario for each of 34 sites taken from
Alexa’s list of most-visited sites[4]. These websites tend to
be complex, making heavy use of AJAX requests, custom
event handlers, and other features that challenge replay.

Each interaction completes what we perceive to be a core
site task, such as buying a product from an online retailer.
Each benchmark comes with user-specified invariant text
used to automatically detect whether the execution has been
successful. For instance, the Walmart benchmark succeeds if



the final page includes the string “This item has been added
to your cart.”

The websites, interactions, and invariants were selected by
one of the authors. The author selected familiar websites in
order to choose a task and an invariant for each benchmark.
We excluded from consideration any tasks that lacked check-
able correctness criteria. While the benchmarks were chosen
without knowing if Ringer would work on them, there was
the possibility of selection bias due to the author’s knowledge
of Ringer’s limitations.

8.1 Comparison to CoScripter

CoScripter[27] is a web record and replay tool built to
automate business processes. We chose to compare against
CoScripter because it is the only existing web replay tool that
can be used by non-programmers. While other replay tools
let users draft scripts by providing recordings, the drafts are
too fragile to use directly. Users must understand code and
the browser well enough to fix the scripts produced by those
replayers.

Unlike Ringer, CoScripter’s scripts are human readable.
This feature comes at a cost: CoScripter’s actions are limited
to a set of predefined operations, such as clicking an element
or typing text. This approach, successful when webpages
were less interactive, fails on modern interactions, e.g., the
use of an autocomplete menu, where the page reacts to a com-
bination of mouse and keyboard events to implement custom
behavior; successful replay requires faithfully reproducing
these fine-grain events. Our evaluation confirmed that using a
small set of high-level actions limited the interactions that can
be replayed, and that faithfully mimicking all fine-grained
user actions was more successful.

Procedure. To test Ringer, we recorded each benchmark
interaction and selected invariant text. We then replayed
the script 5 times, using the invariant text to determine
whether the replay succeeded. If all 5 replays succeeded, we
considered Ringer’s replay successful on the benchmark. We
tested CoScripter manually, so each script was replayed only
once. Thus for CoScripter, we marked a single correct replay
as a success. We performed all replay executions within one
day of the recording.

Results. We found that Ringer succeeded on 25 of the 34
benchmarks (74%), while CoScripter successfully replayed
6 benchmarks (18%). In Table 1, columns Ringer and Co-
Scripter present the results of our experiment.

Of the 9 benchmarks on which Ringer failed, 5 are com-
plete failures for which Ringer never produced a successful
replay. The other 4 are partial failures; Ringer replayed the
script successfully at least once. We provide a sample of the
reasons why Ringer replay failed:

• ebay: The script reached an item for which bidding had
already ended, preventing a bid from being placed.

• g-docs: Ringer could not identify the correct node.

• paypal: The recorded script did not include the login
interaction. (For most pages, the need to record login
is rare, but PayPal logs users out of their accounts very
quickly.)

• webmd: The site used a Flash interface, which Ringer
does not support.

Our post-mortem analysis of CoScripter’s results revealed
two common failures. First, some scripts failed because
CoScripter did not identify the correct target elements on
replay-time pages (column Element in Table 1). We do
not consider this a fundamental flaw as it may be fixed by
substituting our node identification algorithm. The second
limitation is fundamental and results from the decision to
use a small number of predefined human-readable actions.
The lack of fine-grain actions makes CoScripter incapable of
correctly replaying some interactions (column Interaction).
For instance, on the Google search page, the user typed a
partial string “SPLA” and then clicked on an option from
an autosuggest menu. CoScripter recorded this interaction as
“enter ‘SPLA’ into the ‘Search’ textbox.” Without the click,
the query is not executed, which causes the replay to fail.
While CoScripter could add new actions for more webpage
idioms, such as AJAX-updated pulldown menus, such a
scheme is unlikely to keep pace with the rapid evolution
of web design.

Of the benchmarks marked Other, two failed because
CoScripter did not faithfully mimic user key presses. When
a user types a string, the webpage dispatches a sequence
of DOM events for each key press. However, CoScripter
only updated the node’s text attribute, without dispatching
individual key presses. Skipping keypress event handlers
caused the executions to diverge. The final benchmark failed
because CoScripter did not wait for a page to fully load.

8.2 Performance over time

We evaluated how well Ringer scripts handle page changes by
running the scripts repeatedly over a period of three weeks.

Procedure. We used the same set of benchmarks that we
used for the comparison to CoScripter. We repeatedly re-
played each script to determine if the script remained suc-
cessful at each point. We ran each benchmark once every one
to four days, over the three week period.

Results. We found that of the original 24 passing scripts,
only 3 experienced failures on more than a single testing
date. The other 21 scripts were generally successful, with 15
experiencing no failures and 6 experiencing only one failure
over the three week period. Table 2 presents the results of our
experiment.

We used Day 3 as the initial baseline, since our testing
framework experienced failures during Days 1 and 2.

Note that since we conducted the CoScripter experiment
and the longitudinal study months apart, the sites changed
in the intervening period. Therefore, we do not expect the
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allrecipes find recipe and scale it 130 22 X × × ×
amazon find price of silver camera 76 22 X × ×
best buy find price of silver camera 58 13 X × ×
bloomberg find cost of a company’s stock 27 5 X × ×
booking book a hotel room 75 21 X × ×
drugs find side effects of Tylenol 38 13 X X
ebay place bid on item 67 36 × × ×
facebook find friend’s phone number 47 9 3/5 × × ×
g-docs add text into new document 15 6 × × ×
g-maps estimate time of drive 121 35 X × ×
g-translate translate ’hello’ into French 48 12 X × ×
gmail compose and send email 159 22 X × ×
goodreads find related books 88 27 X X
google search for a phrase 29 4 X × ×
hotels book a hotel room 75 17 X × ×
howstuffworks scrape off common misconceptions 32 11 X X
kayak book a flight 74 19 X × ×
linkedin view connections sorted by last name 12 16 X × ×
mapquest estimate time of drive 106 15 X × ×
myfitnesspal calculate caloriess burned 102 23 X × ×
opentable make a reservation 69 24 4/5 × ×
paypal tranfser funds to friend 150 30 × × ×
southwest book a flight 93 15 X × × ×
target buy Kit Kats 70 10 X X
thesaurus find synonyms of “good” 39 9 X × ×
tripadvisor book a hotel room 28 5 × × ×
twitter send a direct message 133 36 X × × ×
walmart buy Kit Kats 51 19 3/5 × ×
webmd use symptom checker 34 17 × × ×
xe convert currency 51 24 X × ×
yahoo find cost of a companies stock 30 3 2/5 X
yelp find and filter restaurants in area 57 28 X × ×
youtube find statistics for video 97 19 X X
zillow find cost of a house 90 19 X × ×

Table 1: We present the results of running our benchmark suite. # Events gives the number of DOM events recorded, and Time
gives the duration in seconds. Ringer shows how well Ringer performs immediately after the recording. CoScripter shows how
well CoScripter performs immediately after recording. A X indicates all replay runs succeeded, and an × indicates all runs
failed. A partial failure is denoted by “# successes / # runs.” Ringer outperforms CoScripter, replaying 25 interactions correctly
vs. 6 interactions. For every benchmark that CoScripter failed to replay, we diagnose a root cause for that failure, shown in
columns Element, Interaction, and Other. Element indicates that CoScripter misidentified an element. Interaction indicates
that replay failed due to an improperly recorded user interaction.



Day
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

allrecipes X X X X X X X X X X X
bloomberg X X X X X X X X X X
drugs X X X X X X X X X X
facebook X X X X X X X X X X
g-maps X X X X X X X X X X
g-translate X X X X X X X X X X
hotels X X X X X X X X X X
howstuffworks X X X X X X X X X X
linkedin X X X X X X X X
mapquest X X X X X X X X
southwest X X X X X X X X
tripadvisor X X X X X X X X X
twitter X X X X X X X X X X
yelp X X X X X X X X X
youtube X X X X X X X X X

goodreads X X X X X X X X 4/5 X
google X X X X X X X X 3/5 X
opentable X X X X X X 1/5 X
zillow X X X X 4/5 4/5 X X X
thesaurus X X X X X 3/5 X 4/5 4/5 X
target X X X X X × X X X X
best buy X X × X X X X X X X
yahoo X X X X X X X X ×
xe X X X 4/5 4/5 X × × ×

kayak 3/5 3/5 4/5 4/5 X 4/5 X 2/5

myfitnesspal 3/5 X 2/5 4/5 4/5 2/5 X 3/5

booking × × × × × × × X X X
ebay × × × 3/5 × × × × × ×

amazon × × × × × × × × × ×
g-docs × × × × × × × × × ×
gmail × × × × × × × × × ×
paypal × × × × × × × ×
walmart × × × × × × × × ×
webmd × × × × × × × × ×

Passing 24 24 24 24 25 25 25 23 24 24 23 22 23 22 24 24 24 24 22 22 21 23

Table 2: We present the results of running our benchmark suite over a period of three weeks. Each column heading indicates the
number of days since the initial recording. Text in a cell indicates that the benchmark was run that day. A X indicates that all
replay runs succeeded and a × indicates all runs failed. A partial failure is denoted by “# successes / # runs”. Benchmarks are
grouped by their status at the start of testing and whether their status changed over the 3 week period. The last line counts the
number of passing benchmarks, treating a benchmark as passing if the latest run of the benchmark passed. The first segment of
the table includes all scripts that produced perfect success rates at every run. The second segment of the table includes scripts
which produced perfect results at the start, but experienced any kind of failure during the test period. The third and fourth
segments include all scripts that failed to produce 5/5 correct replays at the start – that is, these are the scripts that would be
considered failures in the comparison against CoScripter section. The third segment includes scripts whose performance varied
at all during the course of the test period. The fourth includes scripts that consistently produced 0/5 correct replays throughout
the test period.



first day performance to correspond exactly to the first
day performance in the CoScripter experiment. Indeed, 9
benchmarks produced different results, even though the rates
of success are similar at 25/34 and 24/34.

Of the 24 scripts that initially succeeded in 5/5 runs, 9
experienced some type of failure during the testing period. For
7 scripts, these failures were temporary. We did not diagnose
all failures but did determine that some (including the unusual
target failure) were caused by rate limiting. Only 2 scripts
experienced failures that lasted until the end of the testing
period.

Of the 7 scripts that failed temporarily, only 2 experienced
complete failures, meaning only 2 produced 0/5 successful
replays on any day. The remaining 5 experienced partial fail-
ures, meaning that the script continued to replay successfully
at least once (and often more) each day.

Overall, with 20 out of 24 scripts producing at least one
successful replay on every single test date, the results indicate
that Ringer scripts are fairly robust to page changes over a
three week time period.

8.3 Trigger inference

We evaluated whether interactions require synchronization;
whether Ringer learns sufficient triggers to mimic users’
interpretation of visual cues; and how much speedup we
obtain by replaying actions as soon as triggers are satisfied.

Procedure. We used a subset of benchmarks from the
CoScripter experiment. Each benchmark is executed in four
Ringer configurations: the user-timing configuration waited
as long as the user waited during the demonstration. The
no-wait version dispatched events as soon as possible, only
pausing when the target node has not yet been created by
the webpage program. The 2run-trigger and 3run-trigger
versions used triggers inferred from two and three traces,
respectively. We ran each configuration 10 times.

Results. In Figure 7, the x-axis gives the percentage of
runs that succeeded, and the y-axis shows speedup compared
to user-timing. The ideal replayer would pair perfect cor-
rectness with maximum speedup, placing it at the right and
closest to the top.

The no-wait version gives a theoretical ceiling on speedup.
Overall, the 3run-trigger versions of each benchmark had
an average speedup of 2.6x while the no-wait version had an
average speedup of 3.6x.

The user-timing version shows that the original script
generally succeeds if the user was sufficiently slow and the
server was sufficiently fast.

For 9 out of 21 benchmarks, trigger inference was not
needed since the no-wait version succeeded at least 90% of
the time. This is not to say no synchronization was needed,
but often waiting for the target node to appear is sufficient.

For 10 out of 21 benchmarks, triggers were necessary, and
we found that our trigger inference algorithm produced a

version that was faster than the original version and more
successful than the no-wait version.

For two benchmarks, all of the no-wait executions suc-
ceeded while the trigger versions succeeded less than 90%
of the time. Since we automate our tests, it is difficult to
diagnose these failures; possible reasons include bad trigger
conditions, misidentified elements, or the server being down.

Understanding synchronization. To understand why the
no-wait synchronization is fragile, we examined three bench-
marks where Ringer succeeded and no-wait frequently
failed. paypal: If a click was dispatched prematurely, re-
play misidentified an element, clicking the wrong link and
navigating to an unknown page. yelp: Without a sufficient
delay, replay clicked a restaurant filter option while a previ-
ous filter was being applied, causing the page to ignore the
second filter. target: If replay did not wait for the page to
fully load, the page froze after a button click, most likely due
to a partially loaded JavaScript program.

8.4 Node identification

Our final experiment tested our node identification algorithm
in isolation from Ringer. We compared our similarity-based
algorithm to the state of the art and found that our approach
outperformed existing node addressing approaches.

Defining the ground truth, i.e., whether a replay-time
node corresponds to a record-time node, cannot be perfectly
automated. After all, if we could automatically identify the
corresponding node, we would have solved the original
problem. Consider a webpage with a list of blog posts; each
post starts at the top and is shifted down as new entries appear.
Let our record-time target node n be the post at index 0, with
title t. Say at replay-time, the post with title t appears at
index 2. What node corresponds to n? The post at index 0 or
the post with title t? Either could be correct, depending on
the script that uses it. Only the human user can definitively
choose which node they intended to select.

Unfortunately, involving humans vastly reduces the num-
ber of nodes on which we can test. To increase the scale of
our experiment, we define two automatic measures of node
correspondence. Both are based on clicking a node, and subse-
quently checking if the click caused a page navigation. First,
a lower bound: a replay-time node n′ corresponds to a record-
time node n if clicking on n′ causes a navigation to the same
page (the same URL), as clicking on n. Second, an upper
bound: a replay-time node n′ corresponds to a record-time
node n if clicking on both nodes causes navigation, possibly
to different pages. The upper bound handles cases like the
blog described above. Clicking on the top post may be the
right action, but we should expect it to lead to a different
URL. Of course, with these bounds we can only test the node
addressing algorithms on nodes that cause page navigations.
We consider this to be a reasonable tradeoff, as it allows us
to test on a much larger set of nodes than would be possible
through human labeling.
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Figure 7: Success rate v. speedup on a set of benchmarks. Benchmarks with shaded backgrounds require synchronization.

Procedure. We used our upper and lower bounds to test
our similarity algorithm against the iMacros [6] and ATA-
QV [36] algorithms on a dataset of all 5,928 clickable
DOM nodes from the 30 most popular websites, according
to Alexa rankings [4]. On Day 0, for each webpage, we
programatically clicked on every node and recorded the
destination URL. We kept only nodes that caused navigation.
Once per day, we tested whether each algorithm could find
each node.

Results. Figure 8 shows the percentage of nodes on which
each algorithm succeeded each day, using both metrics. Using
the upper bound metric, similarity consistently outperformed
the other approaches. On day zero, performance is compara-
ble across approaches, with similarity slightly outperforming
iMacros and iMacros outperforming ATA-QV. After the rel-
ative consistency of the day 0 performance, similarity begins
to substantially outperform iMacros. Already on the first day,
similarity exhibited about 1.21x the success rate of iMacros
and about 1.50x the success rate of ATA-QV. By the one
month (31 day) mark, similarity exhibited about 1.35x the
success rate of iMacros and about 1.60x the success rate of
ATA-QV. At the one month run, similarity succeeded on
81.4% of the clickable nodes, while iMacros succeeded on
only 60.2%.

The performances of the similarity and iMacros ap-
proaches are much more similar when judged with the lower
bound metric, although similarity produces a better lower
bound than iMacros on every date. On the first day, similar-
ity produces a success rate of 1.06x iMacros’ success rate
and 1.55x ATA-QV’s success rate. By the one month mark,
similarity produces a success rate of 1.08x iMacros’ success
rate and 1.58x ATA-QV’s success rate. Although these 8%
and 58% improvements are not as large as the 35% and 60%
improvements suggested by the more permissive acceptance
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Figure 8: Performance of state-of-the-art node addressing
algorithms against our similarity approach.



criterion, we are satisfied that by either metric, similarity
represents an improvement over the alternative methods.

Similarity weights. The similarity approach in this experi-
ment was the SIMILARITY algorithm with uniform weights.
In additional experiments, we tested this variation against the
SVM and regression versions, and found that the uniform
weights performed best. This result occurs even though we
gave the machine learning versions the advantage of being
tested on the same websites that were used to train them.
The training and testing data were from the same sites, but
different time periods. Already on Day 1, the upper bound
of the uniform weights version was 94% compared to 53%
for the regression-trained weights and 86% for the SVM-
trained weights. The machine learning variations failed be-
cause they placed too much emphasis on a small number of
features. Like prior node addressing approaches, these algo-
rithms relied on the assumption that future webpage changes
would be like the changes observed in the past. In today’s
ever-evolving web, this is not a reasonable expectation. Thus
uniform weights, an approach that can adapt to the largest
variety of changes, produces the best performance.

8.5 Ringer as a building block

Ringer has already been used to construct several tools that
treat replay as a subroutine. For instance, the relational
web scraping tool WebCombine [14] uses Ringer to infer
scripts that are then parameterized into functions and invoked
to collect complex online datasets, e.g. a 3 million row
database of all papers published by the top 10,000 authors in
Computer Science. WebCombine was also used to collect the
StackOverflow statistics cited in Section 1.

We have used Ringer to build a tool for authoring custom
homepages with “live information tiles.” Non-programmers
demonstrate how to scrape the information they want to see –
when the bus arrives, whether a package has been delivered
– and the homepage runs Ringer scripts to populate the
tiles with the most recent information. Another application
resembles Greasemonkey [10], allowing users to modify
webpages by running small Ringer scripts.

9. Related Work
Web automation. Many previous tools allow users to au-
tomate the browser through demonstration. The CoScripter
[27] line of research focuses on making web scripting ac-
cessible to all. This line also includes Vegemite for creating
mashups [29], and ActionShot [28] for representing a history
of browser interactions. CoScripter works at a higher level of
abstraction, making the assumption that its small language of
actions represents all possible interactions. But this language
cannot faithfully capture all interactions on modern pages,
causing it to break in unexpected ways.

Other tools offer record and replay systems as a way to
obtain a rough draft of the target script. This simplifies the
script writing process but not to remove the programming

component altogether. iMacros [6] is one such commercial
tool. The browser testing framework Selenium [8] is another.
Its Selenium IDE component offers a record and playback
functionality. However, both iMacros and Selenium produce
scripts that a programmer must edit. Both of these tools are
targeted at experienced programmers, whose alternative is to
write such scripts from scratch.

Another class of tools aims at streamlining the process
of writing scripts. Chickenfoot [12] lets users combine high-
level commands and pattern-matching to identify elements.
Sikuli [37] uses screenshots to identify GUI components.
Beautiful Soup [5] is a Python library for interacting with
webpages, and libraries such as OXPath [19, 20, 24] and
Scrapy [7] are aimed specifically at scraping. While these
tools do simplify webpage automation relative to writing
scripts in low-level languages, they still demand that the user
be able to program and understand how the browser works.

Mashups [16, 35] allow end-users to connect content from
different sources to create new services. For instance, IFTTT
[1] creates simple conditional mashups that follow the pattern
“If this, then that.” Unfortunately these mashup tools access
data through APIs, and thus depend on programmers to
produce those APIs.

Deterministic replay of websites. Another class of projects
deterministically recreates webpage executions. Mugshot
[31] is a record and replay tool aimed at web developers,
allowing them to recreate buggy executions for debugging
purposes. It records all sources of non-determinism at record-
time and prevents their divergence at replay-time by using
a proxy server and instrumenting the webpages. Timelapse
[13] also implements deterministic replay, but works at a
lower level, using techniques from virtual machine literature.
Jalangi [33] performs replay for JavaScript code, in order to
run dynamic analyses. Like Mugshot, it must instrument the
Javascript code and relies on the JavaScript structure being the
same across executions. These record and replay approaches
work on cached versions of a webpage and therefore cannot
be used to automate interactions with the live page.

Trigger inference. The trigger inference problem is closely
related to race detection on webpages [32]. The aim of trigger
inference is to discover races between webpage code execu-
tion and user actions. However not all races on the webpage
are harmful; we believe most are benign. Therefore, we em-
pirically identify races that cause the script to break. Another
related field is inference of partial orders [18, 30]. This work
infers hidden partial orders based on linear extensions, i.e.,
traces, of the hidden partial orders. Unlike past work, we
aim to find an over-approximation of the partial order and
therefore use a more conservative approach.

10. Conclusion
As more data appears on the web, users need better ways
to programmatically access it. Our system, Ringer, aims to
help end users by turning demonstrations into replay scripts.



But Ringer is just one step towards bridging the gap between
a user’s goals and the interfaces provided by a website. To
achieve this goal, we envision more expressive applications
which use record and replay as a building block. Web scraping
by demonstration is one such tool, but more tools are needed
to help users, especially non-programmers, increase their
access to data on the web.

A. ML Approaches to Node Addressing
In addition to the version of our similarity-based node ad-
dressing algorithm that uses uniform weights, we tested two
variations that used learned weights. We trained the weights
for one with linear regression and the other with SVM.

We collected the training data from the 30 top sites
according to Alexa rankings [4]. For each node in each page,
we recorded all node attributes and the URL reached by
clicking on it. Usually this was the start URL, but in cases
where a page navigation occurs, the post-click URL gives
us a way to check if two nodes are equivalent. We collected
this same information twice, a week apart. For each node ni

in the initial run, we checked whether the post-click URL
differed from the pre-click URL. If yes, we checked whether
any node nf in the final run shared the post-click URL. If
yes, we collected the set of all nodes Nf from the same page
as nf . For each node in Nf , we calculated which attributes
matched the attributes of ni. This vector of Boolean values is
the feature vector for our dataset. The vector for nf (the node
with the matching post-click URL) is the positive example
labeled with 1; all other nodes in Nf are negative examples
and are labeled with 0. Thus, each node may appear in the
dataset multiple times, for different target nodes ni in the
initial run, but the vector is different each time, since the
vector reflects the attributes that match the current ni.

As an example, a node nf1 = 〈a1, b2〉 that corresponds to
ni1 = 〈a1, b1〉 produces feature vector 〈1, 0〉 and label 1 for
node ni1; however for node ni2 = 〈a2, b2〉, the nf1 feature
vector is 〈0, 0〉 and the label is 0. Both of these (feature vector,
label) pairs would be in the dataset.

We used linear regression on this dataset to produce a set
of weights that is used in the linear regression SIMILARITY
algorithm. The same steps, but with a SVM using a linear
kernel, produce the weights used in the SVM node addressing
algorithm.
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