
Compiling a Gesture Recognition Application
for a Low-Power Spatial Architecture

Phitchaya Mangpo
Phothilimthana

University of California, Berkeley, USA
mangpo@eecs.berkeley.edu

Michael Schuldt
University of California, Berkeley, USA

schuldt@berkeley.edu

Rastislav Bodik
University of Washington, USA
bodik@cs.washington.edu

Abstract
Energy efficiency is one of the main performance goals when de-
signing processors for embedded systems. Typically, the simpler
the processor, the less energy it consumes. Thus, an ultra-low power
multicore processor will, likely have very small distributed memory
with a simple interconnect. To compile for such an architecture, a
partitioning strategy that can tune between space and communica-
tion minimization is crucial to fit a program in its limited resources
and achieve good performance. A careful program layout design is
also critical. Aside fulfilling the space constraint, a compiler needs
to be able to optimize for program latency to satisfy a certain timing
requirement as well.

To satisfy all aforementioned constraints, we present a flexible
code partitioning strategy and light-weight mechanisms to express
parallelism and program layout. First, we compare two strategies
for partitioning program structures and introduce a language con-
struct to let programmers choose which strategies to use and when.
The compiler then partitions program structures with a mix of both
strategies. Second, we add supports for programmer-specified par-
allelism and program layout through imposing additional spatial
constraints to the compiler. We evaluate our compiler by imple-
menting an accelerometer-based gesture recognition application on
GA144, a recent low-power minimalistic multicore architecture.
When compared to MSP430, GA144 is overall 19x more energy-
efficient and 23x faster when running this application. Without
these inventions, this application would not be able to fit on GA144.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors–Compilers; I.2.2 [Artificial Intelligent]:
Automatic Programming–Program transformation

Keywords Program Partitioning, Program Layout, Parallelism,
Constraint Solving, Embedded Systems, Distributed Memory

1. Introduction
Energy requirements have been dictating simpler processor designs
with more energy dedicated to computation and less to processor
control. We imagine that future low-power embedded processors
will be minimalistic. Multicore processors will likely have simple

interconnects. A GreenArrays GA144 is a recent example of a low-
power minimalistic spatial multicore architecture1 [7]. It is likely
the most energy-efficient commercially available processor [11].
Naturally, energy efficiency comes at the cost of low programma-
bility; among many challenges of programming GA144, programs
must be meticulously partitioned and laid out onto the physical
cores such that code and data for each core can fit in its 144 bytes
of memory.

Chlorophyll [15] is a language and a constraint-based compiler
developed for GA144. To our knowledge, Chlorophyll is the only
compiler that compiles from a high-level language to arrayForth,
GA144 assembly. Chlorophyll programming model allows pro-
grammers to guide the compiler how to partition data and compu-
tations. The compiler relies on constraint solving and program syn-
thesis to sidestep the laborious development of classical transfor-
mations and optimizations. We use Chlorophyll to compile a real-
istic embedded application for GA144. We select an accelerometer-
based gesture recognition application as our case study because
it requires both intensive computations and a relatively large data
storage for gesture models. As a result, it is not typically run on
an embedded device but offloaded to a more powerful computer or
cloud. However, we believe that performing the classification lo-
cally is more energy-efficient. In order to make the application fit
on GA144 and satisfy an additional timing requirement, we intro-
duce the following extensions to the language and compiler.

In a very limited-resource environment such as a very small
many-core, distributed-memory processor, a program partitioning
strategy is very critical because it not only affects the performance
of the application but, more importantly, determines whether the
application can fit and run on the processor. In this paper, we are
interested in strategies to partition program control flow constructs
(i.e., program structures). The decision between communication
and recomputation of non-control flow computations is another in-
teresting question related to program partitioning, but this question
is not in the scope of this paper. To improve Chlorophyll’s strategy
for partitioning control statements, we compare the original strat-
egy to an alternative and identify their advantages in different sce-
narios. The SPMD (Single Program, Multiple Data) strategy, the
original strategy, replicates control flow constructs in all relevant
cores. The actor strategy avoids replicating control flow constructs
by isolating program portions from the rest of the program control
flow and dedicating a group of cores for each portion to execute the
code upon receiving a request. The two strategies produce more ef-
ficient code—less communication and/or smaller code—in differ-
ent scenarios. We identify when to use one or another and provide
programmers with a construct for choosing between the two.

1 A spatial architecture is an architecture for which the compiler must
assign data computations explicitly to its specific hardware resources.

In addition to having a good partitioning strategy, to satisfy both
space and timing requirements, we also need a good program lay-
out and parallelism. A constraint-based compiler should be able to
generate a good program layout and parallelize a program, if the
cost functions used by its constraint-solving procedures can pre-
cisely capture the architecture’s performance model and all other
relevant constraints. However, creating precise cost functions is dif-
ficult, and using precise cost functions is also often not scalable. On
the other hand, abstract cost functions may lead to poor or infeasi-
ble solutions. In this paper, we show that we can work around the
issue of abstract cost functions by using help from programmers to
provide alternative constraints that are easier to deal with but pro-
vide the same effects. First, by simply providing a constraint that
computations are placed onto distinct logical cores, programmers
can control the computations to be executed in parallel. This an-
notation overcomes the limitation that the abstract cost model used
by the partition type inference ignores program latency. Second, a
constraint that pins a logical core to a physical core allows program-
mers to express program layouts, placing frequently communicat-
ing computations on nearby cores. This constraint compensates for
the limitation that the abstract cost model used by the layout syn-
thesizer ignores the code size constraint. We create new language
constructs for programmers to impose these constraints.

Lastly, we describe our programming toolchain, demonstrate
the benefits of having simulators at several levels of program inter-
mediate representations, and report on the experience of developing
the gesture recognition application. Our implementation of the ap-
plication occupies a total of 82 cores of GA144. The application
is 81%–91% accurate at classifying circle and flip-roll gestures.
Compared to an implementation on MSP430, our GA144 imple-
mentation is overall 19x more energy-efficient and 23x faster. On
the computationally expensive part of the application, GA144 is
even more superior, 71x more energy-efficient. Without the new
techniques we introduce, this application would not be able to run
on GA144.

In sum, this paper makes the following contributions:

• Comparing SPMD and actor partitioning strategies for a very
limited-resource environment and introducing a compilation
mechanism to support a mix of both strategies (Section 3)

• Introducing a light-weight constraint-based mechanism to sup-
port parallelism and programmer-specified program layout
(Section 4)

• Providing a toolchain for compiling and debugging GA144
programs (Section 5)

• Providing a low-power implementation of a gesture recognition
application on GA144 (Sections 6 and 7)

2. Background
2.1 GreenArrays GA144
GA144 is a scalable embedded multicore architecture consisting of
a 2D array of 18 × 8 cores [7]. Each core is identical to the oth-
ers except on available I/O pins. Each core is an 18-bit Forth stack
machine containing only a tiny amount of memory (64-word RAM
and ROM) and two small circular stacks (one for data and one for
return addresses). This forces programs and data structures to be
partitioned over multiple cores. Each core runs asynchronously at
666 MIPS but can communicate with their four immediate neigh-
bors using blocking reads and writes. GA144 consumes less en-
ergy per instruction than any other commercially available archi-
tectures [11]. It consumes 9x less energy and runs 11x faster than
the TI MSP430 low-power microcontroller on a Finite Impulse Re-
sponse benchmark [1].

Figure 1. Accelerometer-based gesture recognition algorithm

2.2 Gesture Recognition Application
We select an accelerometer-based gesture recognition application
as our case study, because this application becomes more and more
popular as it provides an intuitive interaction from human to com-
puter. Typically, the classification is not done locally on an em-
bedded device that collects the data, because it is computationally
expensive. However, we believe that performing the classification
locally is more energy-efficient. We use the gesture recognition al-
gorithm from Wiigee [16]. The main components of the algorithm,
displayed in Figure 1, are a filter and a gesture classifier, which
is composed of a quantizer and a Hidden Markov Model (HMM)
classifier. The filter removes acceleration vectors2 that do not sig-
nificantly deviate from the gravitational acceleration or the previ-
ously accepted vector from the incoming stream of acceleration
vectors. Vectors that are passed continue to the quantizer, which
maps each input vector to a group number. The group number is
found by searching for the closest vector to the input vector from
the 14 centroid vectors. The set of centroid vectors are created dur-
ing training using k-mean clustering. Given a group number, the
HMM classifier of each gesture updates its belief state. The HMM
model is created during training using the Baum-Welch algorithm.
After a gesture completes, we obtain the probabilities from the dif-
ferent gesture classifiers, the gesture with the highest probability is
the most likely gesture.

2.3 Original Chlorophyll Language and Compiler
Chlorophyll compiles a high-level program to GA144 assembly by
decomposing the compilation problem into four main subproblems:
partition type inference, layout and routing, code separation, and
code generation.

Programming Model and Partitioning Strategy
The Chlorophyll language is a subset of C with partition annota-
tion, which is used for assigning a partition type to data and op-
eration. A partition represents a logical core. Every piece of data
and operation lives in a partition, specified by its partition type.
Programmers can specify partition annotations when they wish to
partially or fully partition programs. For example, in this program:

int@0 mult(int x, int y) { return x * y; }

the programmer specifies that the return value of the function will
be delivered at partition 0 but does not specify the partitions of
variable x, y, and operation *. The programming model governs
the compiler’s partitioning strategy to put each constant, variable,
array, operator in only one place. However, there are still multiple
ways to partition control statements.

Partition Type Inference
The partition type synthesizer infers unannotated partition types,
such that each partition fits into a core (occupying no more than 64
words) and minimizes a static over-approximation of the amount
of messages sent between partitions. However, it ignores other
performance counters including program latency.

2 An acceleration vector consists of (x,y,z) accelerometer values.

Given the example program, the compiler may infer (for a very
tiny core):

int@0 mult(int@2 x, int@1 y) { return (x *@1 y); }

The inferred annotations indicate that when function mult is called,
x is passed as an argument at partition 2, and y is passed as another
argument at partition 1. The program body’s annotations specify
that the value of x at partition 2 is sent to partition 1, and is
multiplied with the value of y. Finally, the result of the addition
is sent to partition 0 as the function’s return value.

Layout and Routing
The layout synthesizer then maps each program partition onto a
physical core, minimizing communication cost, the sum of an over-
approximated number of messages between every pair of cores
times the distance between them. To make this problem tractable,
the layout synthesizer does not take the code size constraint into
account. It employs the Simulated Annealing algorithm to solve
the layout problem and determines a communication route between
each pair of cores by selecting an arbitrary shortest path. Given the
fully-annotated program from the previous step, the figure below
shows one possible solution from the layout synthesizer.

x * y return
(1,1) (1,2) (1,3)

Code Separation
The separator splits a fully partitioned program into per-core pro-
gram fragments and inserts send and receive instructions for com-
munication. It splits the running example into:
// Core (1,1) core ID is (x,y) position on the chip
void mult(int x) { send(EAST , x); }
// Core (1,2)
void mult(int y) { send(EAST , read(WEST) * y); }
// Core (1,3)
int mult() { return read(WEST); }

Observe that each variable lives in only one core, but the function
mult lives in all cores that have data or computations in the function.

Code Generation
The code generator first naively compiles each program fragment
into machine code without any local machine-specific optimiza-
tion. The code is then optimized with a superoptimizer [12], which
searches the space of possible instruction sequences to find ones
that are correct and fast or short.

3. Program Structure Partitioning Strategy
This section describes our flexible program structure partitioning
in which the programmer controls the replication of control state-
ments, trading communication efficiency for code size reduction.
Note that this paper focuses on how control statements can be par-
titioned across multiple cores, not on how data and other compu-
tations should be partitioned; we apply the same strategy to parti-
tion data and computations from Chlorophyll. We first describe the
two extreme strategies: the actor model, which replicates no code,
and the SPMD model, which replicates all control statements. We
then develop a compilation algorithm that replicates code based on
function-level annotations for partitioning a program.

3.1 SPMD vs. Actor Partitioning Strategy
An invariant of our partitioning is that data and non-control compu-
tations are not replicated; they are always assigned to exactly one
logical partition, which is mapped to one physical core. The pro-
grammer controls only replication of control statements (ifs and

loops), which determine the control condition, i.e., when a state-
ment is executed. Empirically, replication of control statements
across cores can eliminate messages whose sole purpose is to send
the control condition; it may be less expensive to include on that
core the control statement that computes the control condition.

The Actor Strategy In the actor strategy, when a partition p1
needs a value to be computed on another partition p2, it sends a
request message to p2 and waits until the value is returned. On par-
tition p2, the computation is executed by an actor that is active only
when responding to a request. While the actor strategy minimizes
code duplication, it may incur more communication. Consider the
program in which the function f executes on partition 2.

int@2 f(int@2 i) { ... }
int@1 x;
for (i from 0 to 100) x += f(i);

When f is an actor, each loop iteration requires three messages (the
request to execute f, the argument, and the return value):

// Partition 1
for (i from 0 to 100)

x += actor_call(f, i); // call f in the other partition

// Partition 2
port_execution_mode (); // execute f when requested
int f(int i) { ... }

Many messages from 1 to 2 can be eliminated by replicating the
loop on partition 2, which is done by the the SPMD model.

SPMD Strategy The SPMD model, introduced by Callahan and
Kennedy [4], replicates all control flow constructs onto every parti-
tion, in the spirit of the Single-Program Multiple-Data model [10].
Each partition becomes independent in that it decides when to ex-
ecute each statement, but naturally the replicated control flow con-
structs need to obtain their predicate values, and these may need
to be communicated from the partition that computes the predicate.
For loops with compile-time bounds, the condition is replicated and
computed locally. For the example program above, the SPMD strat-
egy will split the program into:

// Partition 1
for (i from 0 to 100) x += recv ();

// Partition 2
int f(int i) { ... }
for (i from 0 to 100) send(f(i));

While this strategy duplicates control flow constructs, it can reduce
communication significantly. In this program, only one message
is sent per iteration. However, if the control flow of a program is
complex, and the predicates of the control flow statements are not
known at compile time, this strategy may require a lot of messages
for sending the predicate values.

3.2 Language Extension for Controlling Replication
Rather than controlling replication of control statements in each
individual partition, we control replication at the granularity of a
function (a set of partitions or cores). The programmer specifies
which functions should be compiled into actors, and the remaining
function calls are invoked under replicated control flow. Program-
mers actorize a function by defining:

// Do not specify the requester and master actor
actor FUNC;
// Specify the requester and master actor
actor FUNC(REQUESTER => MASTER);

One of the actor partitions in the function is a dedicated master
actor partition, and the rest are subordinate actor partitions. A
requester partition is responsible for sending a remote execution

1 fix1_t@21 f[8];
2 fix1_t@11 s[8];
3 fix1 t@23 b1[32];
4 fix1 t@13 b2[32];
5
6 actor get_b (22= >23);
7 fix1 t@23 get_b(int@23 index) {
8 if (index <@23 32)
9 return b1[index] ;

10 else
11 return b2[index -@13 32];
12 }
13
14 actor step (32= >22);
15 void step(int@22 g) {
16 for (i from 0 to 8)
17 f[i] = s[i] *@22 get_b((g <<@22 3) +@22 i);
18 }
19
20 void swap(int@21 n) {
21 for (i from 0 to 8) s[i] = f[i] <<@21 n;
22 }
23
24 void main() {
25 while (1) {
26 int@32 g = ...; int@32 shift = ...;
27 step(g);
28 swap(shift);
29 }}

(a) Chlorophyll source. Blue , pink , and purple highlight data and com-
putations assigned to partition 22, 23, and 13 respectively. fix1_t is a fixed
point data type with one bit for the integer part.

main

while

step (actor) swap

for

get_b (actor)

for

23
b1, <

13
b2

if

22
<<, +, *

21
f, <<

11
s

32
g, shift

23,13

23,13

22,21,11

22,21,11

21,11

21,11

21,11,32

21,11,32

(b) CDG. An oval represents a control flow construct node. A rectangle
represents a partition node, grouping operations and data that belong to
the partition. The entire highlighted path is the control flow slice of
partition 23. The green striped-highlighted path is its relevant control
flow. Numbers attached to each node are the relevant partitions of the node.

(g<<3) + i
*

shift
g

f[i] b1[index]

s[i]

<< n

(2,1) (2,2) (2,3)

(3,2)

(1,1)

b2[index]

(1,3)

(3,1)

(1,2)

(3,3)

(c) Layout and routing. Partition xy is mapped to physical core (x, y).
Dark and light green denote actor cores of get_b and step respectively.

Figure 2. A simplified example program taken from the gesture
recognition application

1 port_execution_mode(N);
2
3 void step(int g) {
4 for (i from 0 to 8) {
5 int s = recv(S);
6 // call actor get_b in p.23 (east)
7 int b = actor_call(E, get_b , (g << 3) + i);
8 send(W, s * b);
9 }

10 }

(a) A requester of the function get_b: partition 22 or core (2,2)

1 port_execution_mode(W); // wait for request from p.22
2
3 fix1 t b1[32];
4 fix1 t get_b(int index) {
5 int cond = index < 32 ;
6 send(S, cond); // send condition to p.13
7 if (cond) {
8 return b1[index] ;
9 } else {

10 send(S, index); // send index to p.13
11 return recv(S); // return value from p.13
12 }}

(b) A master actor of the function get_b: partition 23 or core (2,3)

1 fix1 t b2[32];
2
3 void get_b() {
4 // wait for condition from p.23 to start
5 if (recv(N)) { }
6 else {
7 // get index from p.23 and return value to p.23
8 send(N, b2[recv(N) - 32]);
9 }

10 get_b (); // loop back to the beginning
11 }
12
13 void main() { get_b (); }

(c) A subordinate actor of the function get_b: partition 13 or core (1,3)

Figure 3. Program fragments of partitions 22, 23, and 13 generated
by the compiler when compiling the program in Figure 2. The com-
piler places blue , pink , and purple highlighted data and compu-
tations from Figure 2(a) in partitions 22, 23, and 13 respectively.
N, S, E, and W stand for north, south, east, and west ports.

request to the master actor to invoke the function. The master actor
in turn triggers subordinate actors to invoke their functions through
data dependencies. More specifically, a subordinate actor waits for
data to be used in its computations inside the function; the data
essentially triggers the rest of the computations inside the function.
Relying on these triggers, program fragments of actor partitions
of a function func do not need to contain the control statements
between the function main to the calls to func. If a partition does
not belong to any actor function, it contains the control statements
starting from main.

Consider the fully-annotated simplified snippet of code from the
gesture recognition application in Figure 2(a). We actorize get_b
by annotating actor get_b(22=>23), specifying that partition 22 is
a requester and 23 is a master actor. Since get_b also contains
partition 13 in addition to partition 23, partition 13 becomes a
subordinate actor. Figure 3 displays illustrative per-core program
fragments generated by our compiler before being converted into
machine code. Figures 3(b) and 3(c) display the program fragments
of partition 23 and 13 respectively. Notice that both partitions do
not have the control statements between main and the call to get_b
(i.e., while, step, and for). Partition 23, the master actor, is in

the port execution mode (line 1), waiting for 22 to send a remote
execution request to invoke get_b. When 23 finishes executing
get_b, it goes back to the port execution mode waiting for the
next request. Partition 23 triggers 13, the subordinate actor, to
start computations in get_b by sending the predicate of if (data
dependency). Partition 13 waits for this data (line 5) to start its
task. When it finishes the task, it loops back to the beginning of
the program to handle the next request. Figure 3(a) displays the
partitioned program fragment at 22. Since it is the requester for
get_b, it sends a remote execution request (line 7) to 23, the master
actor. Partition 22 itself is an actor for another function step, so it
is also in the port execution mode.

3.3 Compiling for Hybrid Strategy
3.3.1 Design Decisions
To support both partitioning strategies in the compiler, we make
the following design decisions. First, we let programmers actor-
ize at a function-granularity level. Among the constructs provided
by Chlorophyll, a partition and a function are referenceable enti-
ties that can be considered as an actor, an entity that acts upon re-
ceiving a request. However, we believe that programmers prefer to
reason about functionality of programs rather than reason about im-
plementation details. Furthermore, if programmers let the compiler
infer partition types for most parts of their programs, they will not
know which partitions are responsible for which parts of the pro-
grams, so they cannot actorize their programs appropriately. Sec-
ond, we let programmers make a decision if each function should
be an actor or not. While it is possible to automate this decision,
the automation is not the focus of this paper. Third, we associate an
actor function with a requester and a master actor. To invoke an ac-
tor function, the requester sends a remote execution request to the
master actor, which in turn triggers the subordinate actors through
data dependencies. We could have made the master actor trigger
the subordinate actors using explicit remote execution requests, the
same way the requester triggers the master actor; however, using re-
mote execution requests may incur a lot of communication, so we
decide to utilize data dependencies instead. Nevertheless, we do not
rely on the data dependency to invoke the master actor because we
would like to support actorizing functions with no argument that
perform I/O activities.

Restrictions Imposed by Our Decisions Since a subordinate ac-
tor partition is invoked upon receiving any data from an expected
neighbor port, it does not have a mechanism to distinguish between
different requests for different tasks because the request does not
identify the task to be invoked. Therefore, to simplify our imple-
mentation, we restrict a partition to be an actor for no more than
one actor function. If a partition is in more than one actor func-
tions, that partition will not be an actor for any function, so the
partition will have the entire control flow from main. Furthermore,
if a partition is an actor for a function, that partition cannot be used
anywhere else outside the function, including for routing messages
for any computation outside the function. Thus, too much actoriza-
tion may cause the compilation to fail due to its implication on the
routing restriction.

Advantages Over Low-Level Partitioning Control The GreenAr-
rays vendor provides a programming environment for GA144,
called arrayForth. It allows programmers to explicitly write sep-
arate programs for individual cores with the flexibility to manu-
ally duplicate data, operations, and control statements, however,
in a stack-based assembly language. Recall that Chlorophyll com-
piles to arrayForth. We can think of arrayForth as an MPI-style
programming model. Initially, partitioning control flow statements
in arrayForth may seem more intuitive than controlling the parti-
tioning strategy in Chlorophyll because programmers maybe more

familiar with MPI than SPMD and actor concepts. However, there
are several advantages to program GA144 using Chlorophyll with
the programmer-controlled hybrid partitioning strategy. First, both
SPMD and actor partitioning strategies guarantee that the gener-
ated code is deadlock-free, unlike MPI. Although actorization may
cause the compilation to fail because of too many constraints on
communication routing, the failure happens at compile time, so
programmers can fix their programs accordingly. Second, it is eas-
ier for a programmer to write a whole program in a sequential
style than to write separate program fragments that run in parallel.
Furthermore, using annotations to control the partitioning strategy
enables programmers to easily explore different ways to partition
program structures just by inserting or deleting actor annotations.

3.3.2 Where to Place Control Flow Constructs
We decide which partitions need copies of each control flow con-
struct based on the relevant control flow slice of each program parti-
tion. In this section, we define the control flow slice and the relevant
control flow slice. Then, we show how the compiler uses this infor-
mation to separate a program into per-core program fragments.

Control Flow Slice
We define a control flow slice of a partition, based on the program
slicing terminology [19], to consist of the control flow constructs
in the slice of the source program with respect to the partition’s
data and computations as a slicing criterion. A slice of a program
with respect to a slicing criterion can be determined from a Pro-
gram Dependence Graph (PDG). We are interested in computing
a control flow slice of a program with respect to a program parti-
tion, so we can use a Control Dependence Graph (CDG), a sub-
graph of PDG. Typically, a node in a CDG is either a control flow
construct or a statement in the program. However, since our slic-
ing criterion is in the level of a logical partition instead of a state-
ment, we group statements, operations, and data that belong to the
same partition together in one node, called a partition node. Thus,
our CDG contains partition nodes instead of statement nodes. An
edge represents a control dependency between nodes in a CDG.
Figure 2(b) depicts the CDG of the program in Figure 2(a). Ovals
represent control flow constructs. Rectangles represent logical par-
titions. Dashed edges indicate interprocedural control dependency
(function calls). A control flow slice of a partition can be directly
derived from a CDG. A control flow slice of a partition consists
of all paths from the main node to the partition node. Figure 2(b)
highlights the control flow slice of partition 23.

Actor and Its Relevant Control Flow Slice
With the pure SPMD strategy, a program fragment of a partition
generated by the compiler will contain the data and computations
assigned to that particular partition and the entire control flow
slice of the partition. In contrast, as we described in Section 3.2, a
partition of an actor function does not need to own the control flow
constructs between main and the calls to that particular function
because a requester partition is responsible for remotely invoking
that function. We call the control flow constructs that an actor
partition actually needs (excluding the constructs between main and
the actor function) the relevant control flow slice of the partition.

Therefore, our task is to determine what the relevant control
flow slice of each partition in the program is. First, we need to
identify which partition is an actor for which function. Identifying
an actor partition is not as straightforward as it seems because not
all partitions inside an actor function are actors. To identify actor
partitions, we perform a reachability analysis on a CDG. Partition
p is an actor and belongs to actor function f , if f is the most
immediate node in the CDG that covers p. Function f covers p if
and only if there is no path from main to p when f is removed from

Algorithm 1 Communication routing
Global variables: ActorsMap,AllActors, UsedCores

1: function ROUTE(a, b)
2: Allow←{}
3: actorFuncA← getActorFunc(a)
4: actorFuncB← getActorFunc(b)
5: if actorFuncA then
6: Allow←Allow ∪ ActorsMap[actorFuncA]

7: if actorFuncB then
8: Allow←Allow ∪ ActorsMap[actorFuncB]

9: Obstacles←AllActors− Allow
10: Path←A∗search(a, b, Obstacles)
11: if actorFuncA and actorFuncA = actorFuncB then
12: ActorsMap[actorFuncA]←
13: ActorsMap[actorFuncA] ∪ (Path− UsedCores)

14: UsedCores← UsedCores ∪ Path
15: return Path

the CDG. p can be covered by multiple actor functions. In such
a case, p belongs to the most immediate actor function; there is no
other actor function between the most immediate actor function and
p. For example, in Figure 2(b), partition 23 is covered by both actor
functions get_b and step, but get_b is the most immediate function
to 23, so 23 belongs to get_b. Now consider 21, which is a partition
inside the actor function step, but it is being used in the function
swap outside the scope of step. According to the CDG, step does
not cover 21. Thus, 21 is not an actor partition for step.

Once we identify actor partitions for all actor functions, we can
compute the relevant control flow slice for every partition. Fig-
ure 2(b) highlights nodes in the relevant control flow slice of par-
tition 23 with green stripes, which is its original control flow slice
excluding the control flow constructs from main to get_b. We can
also see that each program fragment of a partition in Figure 3 only
contains the relevant control flow slice of that particular partition.
Partition 22 only contains step and for. Partitions 23 and 13 only
contain get_b and if.

Inversely, at each control flow construct, we can also compute
a set of relevant partitions, partitions whose relevant control flow
slices contain that particular control flow construct. Figure 2(b)
labels each node in the CDG with its relevant partitions.

Routing Constraint and Algorithm
After the compiler maps logical partitions to physical cores, actor
partitions become actor cores. This section describes how the rout-
ing algorithm works in the presence of actor cores.

Recall our restriction that if an actor partition is associated with
an actor function f , the actor partition cannot contain code or data
used anywhere outside f . During the code separation step, the
compiler inserts communicate code between communicating cores;
therefore, we have to make sure that for every actor core u in an
actor function f , the compiler does not insert communication code
associated with data sending outside f in u.

To ensure this property, we have to modify the routing algo-
rithm. The original routing algorithm simply returns any shortest
path between the two cores. Since there is no obstacle, finding a
shortest path is as simple as moving along the x-axis to the tar-
get y-coordinate and then moving along the y-axis to the target x-
coordinate. With the new restriction, the routing needs to be able to
avoid obstacles. Algorithm 1 displays our new routing algorithm.
Generally, when routing from core a to b, we need to avoid routing
through any actor core. However, if a and b are actors of functions
fa and fb respectively, then the communication path between a and
b can go through other actor cores of both functions (lines 3–8). We
use A* search algorithm to find a shortest path between a and b that
avoids obstacles (actor cores from the other actor functions) (line
10). After we obtain the path, if a and b are both actors of the same
function, we promote all cores along the path as actors of that func-
tion if they have never been used before (line 11-13).

Figure 2(c) displays the layout and routing of the running ex-
ample in Figure 2(a). Assume that the layout synthesizer maps par-
tition xy to physical core (x, y), which represents a coordinate on
a 2D grid. When the compiler finds a path for sending the value of
the variable shift from node (3,2) to (2,1), it avoids routing through
actor cores (2,2), (2,3), and (1,3).

Code Separation
After routing, the compiler recomputes the CDG of the program.
At this step, a partition node in the old CDG becomes a physical
core node in the new CDG. We insert additional cores that are only
responsible for routing data into the new CDG, for example, cores
(3,1) and (1,2) in Figure 2(c), which are only used for routing data.
We also add an edge connecting main node to core (3,1) node in
the new CDG because the value of the variable shift is sent from
core (3,2) to (2,1) through (3,1) in main. Similarly, we add an edge
connecting step to core (1,2) node because the value of s[i] is sent
from core (1,1) to (2,2) through (1,2) in the function step.

With the new CDG, we recompute relevant cores for each con-
trol flow construct. Afterwards, we separate the program AST into
per-core program fragments. While traversing the program AST,
we put each piece of data and computation into the assigned core.
When we encounter a control flow construct, we place it in all of
its relevant cores. When we encounter an actor function call, we in-
sert a command to send a remote execution request in the requester
core to be sent to the master actor core. We set all master actor cores
to port execution mode, waiting for requests from the appropriate
ports. Figure 3 displays some program fragments of the running
example after the code separation step.

4. Extensions to Spatial Constraints
We add light-weight extensions to the compiler’s spatial constraints
to allow programmers to express parallelism and program layout.

4.1 Parallelism
Partition type, originally introduced as a mechanism to partition
data and computations, can be used for expressing parallelism. If
two operations have different partition types, they will be executed
at two different cores and maybe executed at the same time in
parallel, depending on data and control dependency. Consider the
following program:

int@1 x;
int@2 y;
x = x +@1 1;
y = y -@2 1;

The increment of x and and decrement of y run in parallel in parti-
tion 1 and 2 respectively. The language also allows programmers to
declare distributed arrays, which can be used to express data paral-
lelism. For example,
// The first 16 elements are in partition 0.
// The last 16 elements are in partition 1.
int@ {[0:16]=0 , [16:32]=1} x[32];
for (i from 0 to 32)

x[i] = x[i] +@place(x[i]) 1;

is separated to
// Partition 0

int x[16];
for (i from 0 to 16)

x[i] = x[i] + 1;

// Partition 1
int x[16];
for (i from 16 to 32)

x[i-16] = x[i-16] + 1;

Consequently, the two parts of the array are incremented in parallel.

4.1.1 Challenges of Automatic Parallelization
Automatically parallelizing programs is generally challenging. A
very limited-resource constraint in a distributed-memory environ-
ment poses even more challenges to this problem. For example, in
the gesture recognition application, we would like to update the
belief states of two HMM classifiers in parallel. In this code:

hmm_step(acc ,model1);
hmm_step(acc ,model2);

the two hmm_steps do not run in parallel because only one set of
partitions (hence, one set of cores) is responsible for executing the
function. In order to make them run in parallel, the compiler needs
to make two copies of hmm_step—e.g., hmm_step1 and hmm_step2—
and ensure that hmm_step1 and hmm_step2 do not use the same par-
titions. In fact, programmers can make these two functions run in
parallel by themselves, but they will need to manually duplicate the
function hmm_step. Additionally they need to explicitly assign every
data and operation in the function to a partition to make sure that the
two copies of hmm_step do not share any common partition. Doing
this manually is highly error-prone and unproductive. Even then,
the two functions may not run in parallel because communication
routing may introduce dependency between the two functions.

Currently, the compiler does not support automatic paralleliza-
tion for two reasons. First, the partition type inference may not infer
partition type such that hmm_step1 and hmm_step2 will run in paral-
lel. This is because the partition type inference only minimizes the
amount of communication between cores and ignores the latency of
the program. Second, even if the partition type inference is aware
of program latency, it has to choose between minimizing for la-
tency (consequently, obtaining parallelism) or resource usage (con-
sequently, minimizing power consumption). These are conflicting
goals because parallelism on GA144 requires more cores and mem-
ory. We believe that this kind of decision should be made by pro-
grammers and not by the compiler.

4.1.2 New Extension
Thus, we introduce an explicit parallel construct called parallel
module, which can be used by programmers to express parallelism.
Module and module instance are syntactically similar to class and
object. For example, the program in Figure 4(a) uses the module
construct to update the belief states of the HMM classifiers in par-
allel. Despite its syntactic similarity to class, module behaves like a
macro. We insert a module expansion pass into the compiler, which
expands the program in Figure 4(a) to the program in Figure 4(b),
similar to a macro expansion. After the expansion, we obtain the
program in the original Chlorophyll language.

To ensure parallelism, we have to modify the partition type
inference and the routing algorithm. We add an extra constraint to
the partition type inference to ensure that two module instances of
the same module do not share any common partition types; this
guarantees that the two module instances occupy two disjoint sets
of partitions. We also modify the routing algorithm such that when
cores a and b are in the same module instance, a communication
path between a and b cannot pass any core in the other module
instances of the same module. Once the algorithm finds a path
between a and b, it adds cores along the path as members of a’s
and b’s module instance as well.

We also support parallel map and reduce on distributed arrays.
They are not used in the gesture recognition application, but they
can be very useful for implementing data parallel programs. The
compiler handles parallel map and reduce the same way it handles
parallel module: desugaring into the original language and adding
constraints to the partition type inference and the routing algorithm.

// Define module.
module Hmm(model_init) {

fix1_t model[N] = model_init;
fix1_t step(fit1_t [] acc) { ... }

}

// Create module instances.
hmm1 = new Hmm(model1);
hmm2 = new Hmm(model2);

// Call two different functions.
hmm1.step(acc);
hmm2.step(acc);

(a) Source code in Chlorophyll

// Expanded from module instance 1.
fix1_t hmm1_model[N] = model1;
fix1_t hmm1_step(fit1_t [] acc) { ... }

// Expanded from module instance 2.
fix1_t hmm2_model[N] = model2;
fix1_t hmm2_step(fit1_t [] acc) { ... }

hmm1_step(acc);
hmm2_step(acc);

(b) De-sugared code after module expansion

Figure 4. Example of a parallel HMM classification program us-
ing the module construct

4.2 Program Layout
The compiler assigns logical partitions to physical cores by using
Simulated Annealing (SA) [5]. Specifically, given a set P of par-
titions, a set C of cores, a flow function t : P × P → R, and a
distance function d : C × C → R, we want to find the assignment
a : P → C that minimizes the following communication cost:∑

p1∈P,p2∈P

t(p1, p2) · d(a(p1), a(p2))

The flow is the number of messages between any two partitions,
and the distance matrix stores the Manhattan distance between
each pair of cores. The solution is a layout that minimizes the
communication cost.

4.2.1 Challenges of Layout Synthesis
The cost function of the layout problem does not take other spatial
constraints, such as code size, into account. As a result, the layout
synthesizer may produce a program layout, in which some cores
are heavily responsible for routing communication, and the final
code does not fit in every core. The gesture recognition program
requires a careful program layout design in order to fit on GA144.
Unfortunately, because of the abstract cost function used by the
layout synthesizer, the compiler cannot generate code that fits on
GA144. One way to solve this issue is to make the cost function
aware of the code size constraint. However, doing so is difficult.

4.2.2 New Extension
Instead, we compensate this limitation of the compiler by allowing
programmers to design their own program layouts.

Pinning Individual Partition
We introduce a language construct to pin a logical partition to a
physical core:

PARTITION --> CORE

We modify the SA algorithm to understand this extra constraint.
Initially, SA assigns partitions to cores randomly, and in every
round it randomly selects random pairs of cores and swaps the
two partitions inside each pair. We modify SA such that when a
programmer pins a partition p to a core c, it will initially put p in c
and never swap the partition in c with a partition in any other core.

Pinning a Set of Partitions
We also support pinning a set of partitions to a set of cores by
pinning a module instance. In the program in Figure 4(a), we can
pin partitions in hmm1 to be in cores (1,1), (1,2), (2,1), and (2,2) by:

hmm1 = new Hmm(model1)@{(1 ,1) ,(1 ,2) ,(2 ,1) ,(2 ,2)};
// or
hmm1 = new Hmm(model1)@REG ((1 ,1) ,(2 ,2));

where REG(BL,TR) is an abbreviation for a set of cores covered by a
rectangle whose bottom left is at BL and top right is at TR.

Inside a pinned module, we can pin individual partitions as well.
For example, in this program:

module Hmm(model_init) {
0 --> (0,1)
fix1_t@0 model[N] = model_init;
fix1_t@0 process(x,y,z) { ... }

}

hmm1 = new Hmm(model1)@REG ((1 ,1) ,(2 ,2));

we specify that partitions inside hmm1 should be placed at core (1,1),
(1,2), (2,1), and (2,2), and specifically we want partition 0 in hmm1 to
be at (0,1) relative to the most bottom-left core of hmm1, so partition
0 is placed at core (1 + 0, 1 + 1) = (1, 2).

5. Toolchain and Debugger
We have seen in practice that having multiple stages of testing is
important and productive when programming for a complex hard-
ware. For instance, a FPGA toolchain provides multiple simula-
tions: behavioral simulation, functional simulation, timing simula-
tion, and circuit verification [20]. Therefore, we develop a func-
tional simulator, multicore simulator, and machine simulator for
testing at different stages of the compilation.

First, the functional simulator allows programmers to test their
algorithms without worrying about any implementation detail such
as partitioning and layout. Since the core Chlorophyll language is a
subset of C, we can easily generate a C program to be used for the
functional simulation. Second, the multicore simulator allows us
to doubly verify that the compiler indeed generates deadlock-free
code. After the code separation step, we obtain per-core program
fragments. At this stage, we utilize C++ pthread and mutex lock to
produce the multicore simulator. Specifically, we create a thread to
simulate a core running each program fragment. Each communica-
tion channel between two cores is represented by a variable with
a lock to simulate blocking reads and writes. Third, the machine
simulator interprets programs at the bit level, as if running on real
hardware. It gives programmers many standard debugging methods
to help eliminate bugs before running on real hardware, including
breakpoints, state examination, and code execution. This has been
especially useful when debugging problems with compiler’s gen-
erated machine code. Other useful features include a support for
multiple GA144 chips and a support for building testbeds to sim-
ulate I/O devices. When debugging multiple chips, their pins may
be virtually wired together, and programs on different chips can be
debugged in a single system.

This choice of having multiple simulators allows for simulating
program execution at the abstraction level of the problem a pro-
grammer is trying to resolve.

508 – 511
filter(acc)

609608
get_acc()

607
convert
(acc)

506 - 507
connector(acc)

709
I2C timer

708
I2C main

707

606

706

To gesture 2 moduleTo gesture 1 module

Signal from
crystal timer

SensorTag Accelerometer

Send to 600
for printing

(a) Program layout of accelerometer reading and data filtering

306
206
106
207

201
101

get_a(i)
a[64]

001 – 004
get_b(i)
b[114]

302

102
sum +=

a * s

301

203
f[8]

fmax

303

103
sum * b

max

204

304

205

305

105
pi[8]

005 006

307

107

007

g =
quantizer(acc)

prob fmax accshift

202
s[8]
prob

Gesture classifier module

104
step()

g<<3 +k

Communication to
core 506 - 507

(b) Program layout of one gesture classifier. Black solid and blue dashed
arrows denote data flow for updating the belief states f and s respectively in
every classification round. A dotted-dashed green arrow denotes data flow
for obtaining a final probability after 1000 rounds.

Figure 5. Program layout for the gesture recognition application.
Each core is labeled with three digits. The first digit indicates the
x-coordinate. The last two digits indicate the y-coordinate. Orange
highlights cores that are actors.

6. Application Implementation
Figure 5 displays the program layout of our gesture recognition
application on GA144. The accelerometer reading, filtering, and
the connector of all components are located in the top part of the
chip, as shown in Figure 5(a). This leaves the entire bottom portion
of the chip for the gesture classifiers, but there is only room for two
gesture classifiers, given their size. The two gesture classifiers have
an identical layout shown in Figure 5(b).

6.1 Functional Implementation Details
Accelerometer Reading The I2C implementation used for com-
municating with the accelerometer is based on GreenArrays’ Sen-
sorTag application documentation [8]. A 32KHz software con-
trolled crystal is used to clock the application to read the accelerom-
eter at 200 Hz. The main I2C node 708 communicates with the
accelerometer using node 709 to wait for clock edges. Node 608
passes the raw accelerometer register values to node 607, which
converts the raw values into a proper fixed-point format and sends
the converted values to the connector nodes 506 and 507.

Gesture Classifier The connector nodes pass the accelerometer
data to the filter function and the gesture classifiers. They also
gather the final probabilities from the gesture classifiers and send
them to node 600 to be printed via a serial port.

There are three types of communication between the connector
and a gesture classifier as illustrated with solid, dashed, and dotted-
dashed arrows in Figure 5(b). The solid arrows depict the data
flow for the main computation for each round of accelerometer
reading. The main computation derives the group number of an
acceleration vector and uses the group number along with the
model data a, b, and pi to update the belief states f and s. Because
of the accuracy limitation of an 18-bit fixed point arithmetic, we
have to prevent the belief state values from getting too small by
shifting the values left by some amount. To maintain correctness,
all belief state values in all models must be shifted by the same
amount. Thus, the main computation returns the largest value in its
belief state fmax to the connector. Once the connector collects fmax
values from all gesture classifiers, it determines the shifting value
shift. The dashed arrows depicts the data flow for updating the
belief state s to be equal to f shifted left by shift bits. After 1,000
rounds, we print out the final probabilities of all gestures and reset
the classifiers. The dotted-dashed arrows depict the data flow for
obtaining the final probabilities.

6.2 Utilizing New Compiler Extensions
Actorization Actor functions are used throughout the program,
as evidenced in Figure 5, which highlights actor cores. We use
actors to both reduce communication and code size for I2C cores.
The crystal timing node 713 sends a request to node 608 to read
accelerometer data. Node 608, in turn, triggers node 708 to start
the communication with the accelerometer. Node 708 also sends
a request to node 709 to wait for the next clock edge and then
sends a signal back. Within a gesture classifier module, we also
use actors to reduce code size for cores that store large model data
arrays or perform many computations. The use of actors inside the
gesture classifier incurs more communication between cores, but it
is crucial to make the application fit in a small distributed memory.

Parallel Module To make two gesture classifiers run in parallel,
we use the parallel module construct to create two gesture classi-
fiers and place them on different regions of the chip: core 001–307
and core 008–314. Each module instance contains gesture-specific
model data for a quantizer and an HMM classifier, which is param-
eterized during the creation of the module instance.

Programmer-Specified Program Layout Last, we use the new
language construct to specify the program layout displayed in Fig-
ure 5 to the compiler in order to make the code fits in GA144.

7. Experimental Results
In this section, we evaluate the impacts of the compiler extensions
on the gesture recognition application. First, we evaluate the accu-
racy of the application running on GA144. Second, we evaluate the
impact of being able to compile the application for GA144. Third,
we evaluate the individual impact of each extension we introduce.

7.1 Classification Accuracy
In this experiment, we verified that the compiled application on
GA144 is able to predict hand gestures accurately. We asked two
participants to perform circle and flip-roll gestures, 11 times for
each gesture. The prediction accuracies for the two participants
were 90.91% and 80.82%. We obtained a similar prediction accu-
racy to Wiigee’s (the original implementation that our application
was based on), which ranges from 84% to 94% [16]. The demon-
stration of the application running on GA144 can be viewed at:
https://youtu.be/GD9lVm1ZyNQ

7.2 GA144 vs. MSP430
Next, we evaluated the impact of being able to run the applica-
tion on GA144. If running the application on other processors
that do not require difficult programming partitioning and a care-
ful program layout design were as good as running the applica-
tion on GA144, we would not have to bother developing the com-
piler extensions we have introduced. For this purpose, we selected
MSP430, a widely-used ultra low-power micro-controller to com-
pare GA144 against.

7.2.1 Implementation for MSP430
We implemented the same application for MSP430F5529 with 128-
kB flash, 8-kB RAM, and up to 25 MHz CPU speed. We used 16
bits to represent a fixed-point number instead of 18 bits as im-
plemented on GA144. We interfaced the ADXL345 accelerome-
ter to MSP430 via I2C protocol. Note that we used the SensorTag
accelerometer for GA144. Although the accelerometers were dif-
ferent, we implemented the same I2C protocol on both GA144
and MSP430. Therefore, the two processors performed exactly
the same activities to communicate with the accelerometers. The
accelerometers were powered by a different energy source from
the one that powered the processors, and we excluded the en-
ergy consumed by the accelerometers when comparing GA144 and
MSP430. Therefore, we believe that our comparison was fair.

7.2.2 Experimental Results
We measured the energy consumption for one round of classifi-
cation. In each round, the application read an (x,y,z) acceleration
vector and updated the belief states of the two gesture classifiers
if the input vector passed the filter. Reading the accelerometer re-
quired many I/O activities; whereas, filtering accelerometer values
and updating the belief states required a lot of computations. Thus,
we measured the energy consumptions of the two tasks separately
to compare the performance of GA144 and MSP430 for the differ-
ent types of usages. We powered GA144 with 1.8 V and MSP430
with 2.2 V, as these are the typical voltages. We powered the ac-
celerometer from a different power source because we are only
interested in energy consumption by the processors. We ran each
task in a loop hundred to hundreds-of-thousand times to measure
the average current drawn (using a multimeter with a microamp
precision) and completion time by each processor.

Table 1 reports completion time and energy consumption of run-
ning one round of classification on GA144 and MSP430. Over-
all, GA144 was 18.8x more energy-efficient and 23.2x faster than
MSP430. If we look at each task separately in Table 2, GA144
was excellent at performing a computationally heavy task: filter-
ing and classification. It was three orders of magnitude faster and
71.1x more energy-efficient than MSP430. Recall that the applica-
tion should run 200 rounds of classification in one second; each
round takes 5 milliseconds. However, MSP430 took 60 millisec-
onds to update the belief states, if the accelerometer values passed
the filter. Therefore, MSP430 was not able to run 200 rounds in one
second consistently like GA.

On the other hand, MSP430 was better at the accelerometer
reading task, 2.2x more energy-efficient than GA144. However,
we believe that we can further optimize GA144 for this task. In
our implementation, the main I2C core, which interacts with the
accelerometer, waits for its I/O pin to become high by spinning in
a loop. Therefore, the program can be optimized by avoiding this
loop. Unfortunately, the main I2C core is completely full, and we
need more space for this optimization. To make the optimized code
fit in this core, the compiler will need advanced transformations
that exploit transferring code (not just data) between cores.

Processor Execution time per round Energy consumption per round
absolute (ms) relative to GA144 absolute (µJ) relative to GA144

GA144 2.639 - 2.231 -
MSP430 61.346 23.2x 41.920 18.8x

Table 1. Total execution time and energy consumption per one round of classification

Accelerometer Reading Filter & Classification
Processor power time energy energy power time energy energy

(mW) (ms) (µJ) relative to GA144 (mW) (ms) (µJ) relative to GA144
GA144 0.633 2.610 1.652 - 19.957 0.029 0.579 -

MSP430 0.565 1.346 0.760 0.46x 0.686 60.00 41.160 71.1x

Table 2. Energy consumption per each task per one round of classification

Features Number of Overflowed Biggest Total
used cores cores core (words) words used

Actor + layout 82 0 64 2,609
No actor + layout 90 12 87 3,152

No actor + no layout 82 20 89 3,071

Table 3. Size of generated code. Each core can store up to 64 words of data and program.

7.3 Impacts of Compiler Extensions
Without the extensions we developed, we would not be able to run
the application on GA144 because the code could not fit in its mem-
ory. Table 3 shows the impact of the new extensions on the sizes
of generated programs. ‘Actor’ indicates actorizing some functions
(yielding hybrid partitioning strategy), and ‘layout’ indicates spec-
ifying program layout. When we actorized program appropriately
and specified the program layout design (‘actor + layout’), the ap-
plication fit on every core. However, when all functions were ac-
tors, the compiler failed to generate code because it could not find
a feasible routing between every communicating pair of cores. Re-
call that actors impose additional constraints to the routing algo-
rithm; the more actors, the more obstacles the routing algorithm
has to avoid. When we did not actorize any function but specified
the program layout (‘no actor + layout’), the compiler successfully
generated code, but 12 cores overflowed, and the total number of
cores used was 90 instead 82. When we did not actorize any func-
tion and did not specify the program layout (‘no actor + no lay-
out’), 20 cores overflowed, and the biggest core overflowed by 25
words. When we actorized some functions but did not specify the
program layout, the compiler failed to find feasible routing between
some cores. We excluded the failed versions from the table. In sum-
mary, these results reveal that both hybrid partitioning strategy and
programmer-specified layout are crucial for compiling code for a
very limited-resource environment.

Furthermore, without the parallel module construct, we would
have to duplicate the classification code and explicitly assign ev-
ery data and computation to a partition to achieve parallelism, as
explained in Section 4.1.1. Hence, the parallel module construct
tremendously increased our productivity.

8. Future Work
There are several parts of the Chlorophyll compiler that can be
be improved even further. First, we would like to make the com-
piler actorize programs automatically because this task may not be
very intuitive to programmers. Second, we would like to improve
the partitioning, layout, and routing algorithms to be smarter. As
we discussed earlier, in order to fit the gesture recognition appli-
cation on GA144, the partition type inference, layout synthesizer,
and routing algorithm have to take the space occupied by commu-
nication code into account, which is very difficult. An alternative

way is to iteratively improve the solutions. When the machine code
generated from the compiler does not fit in some cores, the com-
piler compiles the program again. This time, it can learn from the
previously generated code how much communication code may be
inserted if it partitions the programs, mapping partitions to cores,
and generate communication paths the way it has done before so
that it can adjust its strategies accordingly. Lastly, the debugging
support can be improved. Specifically, a tool that visualizes pro-
gram layout, data location, and data routing will be extremely use-
ful when programming a distributed computing system in such a
small granularity.

9. Related Work
The SPMD program partitioning strategy was proposed by Calla-
han and Kennedy [4]. They pointed out that the partitioned program
can be described as SPMD because in the most naively compiled
code, every node executes the same program but performs compu-
tation on distinct data items. The Chlorophyll compiler splits the
code more efficiently, similar to an ideal compiler described by
Callahan and Kennedy, such that empty statements are removed.
Many Distributed Fortran compilers apply this partitioning strat-
egy with an owner computes rule to partition programs such that
computations happen at the same place where the left-hand-side
data element lives [3, 13].

The actor program partition strategy is similar to the strategy the
X10 compiler uses for handling place change when programmers
use the construct at to specify where the data and the computations
inside the scope of at live and happen [18]. However, our language
construct for actorization is very different from the X10 construct.
As discussed in Section 3.3.1, since GA144 cores are very small,
multiple cores may be required to perform one functional task.
Therefore, we provide the construct that is suitable for actorizing
a task performed by multiple cores. In contrast, X10 targets much
bigger nodes, so a task can normally fit in one node. Thus, the at
construct seems appropriate for X10’s use cases. We borrow the
name actor and its concept of reacting upon a request to perform
a task from the actor model for a concurrent computation [9].
However, we use the actor concept to avoid duplicating control flow
constructs instead of obtaining concurrency.

An existing constraint-based approach can solve partitioning,
placement, and routing problems simultaneously using Integer Lin-

ear Programming (ILP) to map a computation DAG to a graph rep-
resenting hardware’s structure [14]. However, this technique can-
not be applied to our partitioning and layout problems because it
assumes a simple program control flow with no loops, as it targets
scheduling problems at a finer granularity. Consequently, it does
not address the problem of partitioning control statements.

Type systems have been used in many distributed programming
languages to ensure properties of interest. For example, program-
mers can use a type system to infer the localization of expressions
onto processors in synchronous dataflow programs [6]. Some are
used to identify what portions of programs can be safely executed in
parallel [2, 17]. Chlorophyll’s partition type system differs from the
type systems built purposefully for parallelism because it is origi-
nally designed for partitioning data and computations. However,
partitioning and parallelism are inevitably related.

10. Conclusion
As energy efficiency forces processors to become simpler, com-
pilers have to become smarter. Our work presents a method for
making a compiler smarter through constraint solving, classical
program transformations, and programmer-specified insights. We
introduced new extensions to Chlorophyll to make complex ap-
plications run on a very small distributed-memory multicore pro-
cessor and to allow programmers to express parallelism. First, we
compared actor and SPMD partitioning strategies and extended the
Chlorophyll language to allow programmers to control when to use
which partitioning strategies. With this extension, the compiler can
partition program structures using a mix of both strategies. Second,
we added light-weight extensions to the compiler’s spatial con-
straints to allow programmers to express parallelism and program
layout. As a result, the gesture recognition application was able to
fit and run on GA144. We demonstrated the benefit of being able to
compile this application for GA144 by comparing GA144 against
MSP430 and showed that we saved energy by 19 times when run-
ning on GA144.

Acknowledgments
We would like to thank Charley Shattuck and Greg Bailey from
GreenArrays Inc and Rimas Avizienis for help on getting the appli-
cation to run on GA144. We would like to thank Heather Levien for
help on editing this paper. This work is supported in part by Qual-
comm Innovation Fellowship, MSR Fellowship, Grants from NSF
(CCF–1139138, CCF–1337415, and ACI–1535191), U.S. Depart-
ment of Energy, Office of Science, Office of Basic Energy Sciences
Energy Frontier Research Centers (FOA–0000619), and DARPA
(FA8750–14–C–0011), as well as gifts from Google, Intel, Mozilla,
Nokia, and Qualcomm.

References
[1] R. Avizienis and P. Ljung. Comparing the Energy Efficiency and

Performance of the Texas Instrument MSP430 and the GreenArrays
GA144 processors. Technical report, 2012.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In SC, 2012.

[3] Z. Bozkus, A. Choudhary, T. Haupt, G. Fox, and S. Ranka. Compiling
hpf for distributed memory mimd computers. In The Interaction of
Compilation Technology and Computer Architecture. 1994.

[4] D. Callahan and K. Kennedy. Compiling programs for distributed-
memory multiprocessors. The Journal of Supercomputing.

[5] D. T. Connolly. An improved annealing scheme for the QAP. Euro-
pean Journal of Operational Research, 1990.

[6] G. Delaval, A. Girault, and M. Pouzet. A type system for the auto-
matic distribution of higher-order synchronous dataflow programs. In
LCTES, 2008.

[7] GreenArrays. Product Brief: GreenArrays Architecture, 2010.
URL http://www.greenarraychips.com/home/documents/greg/
PB002-100822-GA-Arch.pdf.

[8] GreenArrays. Appplication Note AB012: Controlling the TI SensorTag
with the GA144, 2013. URL http://www.greenarraychips.com/
home/documents/greg/AN012-130606-SENSORTAG.pdf.

[9] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor
formalism for artificial intelligence. In IJCAI, 1973.

[10] A. H. Karp. Programming for parallelism. Computer, 20(5):43–57,
May 1987.

[11] P. Ljung. Welcome to the dark side of computing, 2011. Presented at
ParLab Summer Retreat, University of California, Berkeley.

[12] H. Massalin. Superoptimizer: a look at the smallest program. In
ASPLOS, 1987.

[13] J. Merlin. Techniques for the automatic parallelisation of ‘distributed
fortran 90’. Technical Report SNARC 92-02, Southampton Novel
Architecture Research Centre, 1992.

[14] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili. A general constraint-centric scheduling framework
for spatial architectures. In PLDI, 2013.

[15] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and
R. Bodik. Chlorophyll: Synthesis-aided compiler for low-power spa-
tial architectures. In PLDI, 2014.

[16] T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition
with a wii controller. In International Conference on Tangible and
Embedded Interaction, 2008.

[17] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken. Regent: A
high-productivity programming language for hpc with logical regions.
In SC, 2015.

[18] M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzumura,
T. Suganuma, and T. Onodera. Compiling x10 to java. In ACM SIG-
PLAN X10 Workshop, 2011.

[19] F. Tip. A survey of program slicing techniques. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1994.

[20] Xilinx. FPGA Design Flow Overview, 2008. URL
http://www.xilinx.com/itp/xilinx10/isehelp/ise c fpga
design flow overview.htm.

