Automated Reasoning for Web Page Layout

Pavel Panchekha

University of Washington, USA
{pavpan,emina}@cs.washington.edu

Abstract

Web pages define their appearance using Cascading Style
Sheets, a modular language for layout of tree-structured
documents. In principle, using CSS is easy: the developer
specifies declarative constraints on the layout of an HTML
document (such as the positioning of nodes in the HTML
tree), and the browser solves the constraints to produce a
box-based rendering of that document. In practice, however,
the subtleties of CSS semantics make it difficult to develop
stylesheets that produce the intended layout across different
user preferences and browser settings.

This paper presents the first mechanized formalization of
a substantial fragment of the CSS semantics. This formal-
ization is equipped with an efficient reduction to the theory
of quantifier-free linear real arithmetic, enabling effective
automated reasoning about CSS stylesheets and their behav-
ior. We implement this reduction in Cassius, a solver-aided
framework for building semantics-aware tools for CSS. To
demonstrate the utility of Cassius, we prototype new tools
for automated verification, debugging, and synthesis of CSS
code. We show that these tools work on fragments of real-
world websites, and that Cassius is a practical first step toward
solver-aided programming for the web.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques

Keywords Solver-aided tools, cascading style sheets, SMT,
synthesis, layout

1. Introduction

Cascading Style Sheets (CSS) is the language for specifying
the appearance of web pages. It provides developers with a
modular, declarative mechanism for controlling all aspects of
web page layout—from font sizes, to colors, to positioning of
web page elements. Almost all web pages use CSS (W3Techs

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissi .org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

OOPSLA 16, October 30-November 04 2016, Amsterdam, Netherlands

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4444-9/16/10. ... $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2983990.2984010

Emina Torlak

<html> <body>
<p>Our products:</p>
<main>
<div>A</div> <div>B</div>
<div>C</div> <div>D</div>
</main>
<p>Buy now!</p>
</body> </html>

Our products:

A B
C D

Buy now!

main {background:gray;
width:100%; float:left}

div {height:200px; width:200px;
float:left; font-size:144pt; }

Figure 1: HTML and CSS for a grid of products. An HTML
file (above the line on the left) or document defines a tree
of elements; the CSS file or stylesheet below the line has
two rules each of which sets several properties. The resulting
rendering is shown on the right.

2015), with tens of thousands of developers writing millions
of lines of CSS code. But writing high-quality CSS is not easy.
Because of the subtleties of CSS semantics, many web pages
violate their intended layouts when rendered with particular
screen sizes, browsers, or user preferences.

For example, consider the toy product page in Figure
It displays a grid of products in a box with a colored back-
ground, and the grid expands when the browser window does.
The CSS that achieves this layout uses floating in two radi-
cally different ways. Floating allows two boxes to be horizon-
tally adjacent, as when the products are floated to lay them
out in rows. However, the <main> container is also floated,
even though no boxes are horizontally adjacent to it. Without
being made to float, the container would shrink, and the prod-
uct grid would not have a background color. This is because
the container has to be a flow root in order to expand to con-
tain its floating children. No dedicated CSS property turns a
box into a flow root, but floating the container does so as a
side effect. While floating the container works in our case, it
would not work if the paragraph following the product grid
had a background, or if the container had a border; in both
cases, a different fix would be needed. Reasoning through
these cases is complex and error-prone, and no tools currently
exist to simplify the process.

Solving a problem like this automatically requires tools—
such as verifiers, debuggers, and synthesizers—that can
reason about the semantics of web page layout. A web page
verifier, for example, could ensure that an off-the-shelf grid
layoulﬂ expands as desired for all screen sizes. A debugger
could identify the parts of the stylesheet that are responsible
for any problems found by the verifier. Finally, a synthesizer
could automatically repair the buggy constraints to enforce
the desired properties. Alternatively, if the developer is
crafting a web page from scratch, a synthesizer could produce
the stylesheet automatically, given the HTML documents to
be styled and a mock-up of the desired page layout.

However, semantic tools like these do not exist. In fact, the
only CSS tools available to developers besides browsers are
syntactic linters and compressors. The lack of semantic tools,
despite their potential impact and large user base, is best
explained by the complexity of the CSS semantics, which
makes building such tools both technically challenging and
time-consuming.

This paper presents Cassius, the first framework for au-
tomated reasoning about web page layout. The framework
facilities rapid development of semantic tools for verifica-
tion, debugging, and synthesis of CSS stylesheets. The key
ingredient of Cassius is a faithful and efficient formalization
of a substantial fragment of the CSS semantics in the the-
ory of quantifier-free linear real arithmetic (LRA). This for-
malization enables reasoning about CSS using off-the-shelf
Satisfiability Modulo Theories (SMT) solvers.

The Cassius fragment of CSS is rich enough to lay out
fragments of many real-world websites, such as Wikipedia,
Google, and Amazon. Our formalization focuses on the
core aspects of the CSS semantics: cascading stylesheets,
generating boxes for HTML elements, and laying out the
resulting boxes. Each of these steps is modeled in detail,
including computing used values, collapsing margins, and
aligning text. In essence, Cassius is a feature-rich, declarative
implementation of a browser layout engine, consisting of a
set of LRA constraints that relate the inputs to the browser
(the CSS stylesheet and the HTML document) to its output
(the resulting box-based layout).

Applying Cassius to real web pages involves two key
technical innovations. The first is identifying a fragment of
CSS that is both expressive and amenable to layout with
a non-deterministic incremental algorithm. The second is
developing a technique, based on auxiliary uninterpreted
functions, for encoding an arbitrary run of this algorithm
in LRA. Together, these two innovations enable Cassius to
reduce a given layout problem to a quantifier-free formula
that is linear in the size of the problem. In contrast to a naive
encoding, which is quadratic in problem size and quickly
overwhelms the solver, our encoding can be solved in seconds,
even for large inputs.

! From a framework such as Bootstrap (Otto and Thornton|2015).

We demonstrate the utility and efficiency of Cassius by
using it to prototype three novel semantic tools for CSS. The
first tool is a verifier, which checks CSS stylesheets against
usability and accessibility properties, such as ensuring that
no boxes cover buttons or other control elements. The second
tool is a debugger, which highlights the parts of a stylesheet
that are responsible for a particular layout outcome, such as
the position of a given box on the screen. The third tool is a
synthesizer, which generates CSS from the desired layout of
several concrete HTML documents. Our synthesizer could
be extended to allow designers to work in a visual editor and
automatically transfer their designs to the web. By building
on top of Cassius, each of these tools was developed in a few
days, and they all scale to fragments of real web pages.

In summary, this paper makes the following contributions:

e The first mechanized formalization of a core fragment
of the CSS semantics, with an efficient encoding in the
theory of linear real arithmetic.

* An implementation of this formalization in Cassius, a
framework for building semantic tools that can reason
about web page layout.

e Three prototype tools built with Cassius, which demon-
strate the utility and efficiency of our formalization.

The rest of the paper is organized as follows. Section [2]
presents an overview of Cassius and its applications. Sec-
tion [3] describes our formalization of the CSS semantics,
highlighting the design choices that enable efficient reduction
of this semantics to LRA. We show how to perform such a re-
duction in SectionH] Section[3ldemonstrates the conformance
of our CSS semantics to browser behavior, its practicality as
a subset CSS, and its amenability to efficient automated rea-
soning. We conclude the paper with a discussion of related
work (Section@ and a summary of contributions (Section .

2. Overview and Applications

This section provides an overview of the Cassius framework
from the point of view of a tool builder. We describe the in-
terface exposed by the framework and its application to three
example tools for web design. Sections [3]and [d] present the
details of the framework’s semantics and its implementation
by reduction to SMT.

2.1 The Cassius Framework

Cassius can be thought of as a declarative browser that ex-
poses an interface similar to that of a standard, imperative
browser. Given an HTML document and a CSS stylesheet,
an imperative browser produces a layout that displays the
document contents in a tree of boxes, as specified by the
stylesheet. Figure[I| shows an example document, stylesheet,
and layout. The interface to Cassius is based on the same con-
cepts: a tree-structured HTML document, a CSS stylesheet
that styles the nodes in this tree, and a box layout of the tree
that respects the given style constraints. Unlike an imperative

browser, however, Cassius can perform the layout computa-
tion both forwards and backwards: it can not only compute
a layout from a document and a stylesheet, but it can also
compute a stylesheet from a document and a desired layout.

To enable reversible layout, Cassius operates on symbolic
layouts and stylesheets—both may be sketches that contain
unknown values or holes to be filled by the declarative
browser. (An imperative browser, in contrast, allows only
layouts to have holes.) Figure 2] shows an example input to
Cassius, consisting of an HTML document A, stylesheet B,
and symbolic layout C. Cassius takes inputs in a simple s-
expression syntax, with question marks (?) denoting holes. It
fills these holes by reducing the layout computation problem
to a set of constraints in linear real arithmetic (LRA), solved
with Z3 (De Moura and Bjgrner|2008]). Solving for the holes
in Figure 2] for example, is akin to rendering the HTML and
CSS from Figure|[T}

In general, Cassius takes as input a symbolic stylesheet, a
set of document-layout pairs, and a set of LRA assertions on
the holes (expressing, e.g., usability properties). Given these
inputs, it will fill the holes in the stylesheet and layouts so
that the resulting concrete stylesheet simultaneously renders
each document to its layout, while satisfying the provided as-
sertions. Our declarative browser can thus execute the layout
process forwards and backwards for multiple documents that
share the same stylesheet.

A declarative browser provides a convenient platform for
building a wide variety of semantic tools for web developers.
We demonstrate three such tools below and evaluate them on
fragments of real web pages in Section[5] All three tools are
built by reducing a development task—such as repairing a
broken stylesheet—to the problem of completing holes in a
symbolic stylesheet or layout. Cassius either completes the
holes or returns an explanation for why a completion does
not exist, given in terms of CSS constraints. The client tool
then presents this output to the user.

2.2 Verifying Layouts

As we saw in Section [I] using CSS to specify an attrac-
tive and usable web page layout can be surprisingly tricky.
Even expert-written CSS (e.g., Bootstrap (Otto and Thornton
2015)) can suffer from usability bugs, such as overlapping
text or control elements (buttons), figures separated from
their captions, or elements rendered off-screen on smaller
devices. These bugs may only manifest at a particular screen
size, making them difficult to discover. In practice, developers
spot-check for stylesheet bugs manually, by using an impera-
tive browser to render their web page at a few sample screen
sizes, text sizes, etc. Such manual testing is both tedious and
unlikely to achieve good coverage.

Using a declarative browser, we can instead verify that
a stylesheet satisfies desired properties. Given a document
D, a stylesheet C, and a property P, a verifier can prove
that P is satisfied when rendering D and C' under any
possible viewport sizes, font sizes, or other layout parameters

(document A

([html]
([body] (stylesheet B
([p] "Our products:") ((tag main)
([main] [width (% 100)]
([div] "A™) [float left])
([div] "B") ((tag div)
([div] "c") [width (px 200)]
([div] "D")) [height (px 200)]

([p] "Buy now!")))) [float left]))

(layout C
([ROOT :w 400 :h 600]
([BLOCK :w ? :h 7 :x ? :y 7]
([BLOCK :w ? :h ? :x 7 :y 7]
([BLOCK :w ? :h ? :x ? :y 7]
([LINE :w ? :h ? :x 7 :y 7]

([TEXT :w 112 :h 19 :x 0 :y 16]1)))
([BLOCK :w 400 :h 400 :x ? :y 7]

([BLOCK :w 200 :h 200 :x 0 :y 7] ...)
([BLOCK :w 200 :h 200 :x 200 :y 7] ...)
([BLOCK :w 200 :h 200 :x O :y 7] ...)
([BLOCK :w 200 :h 200 :x 200 :y 7] ...))
([BLOCK :w ? :h ? :x 7 :y 7]

([LINE :w ? :h ? :x ? :y 7]
([TEXT :w 76 :h 10 :x 0 :y 4511))))))))

Figure 2: Figure|l|translated to Cassius input, containing an
HTML file, a CSS file, and a rendering (line and text boxes
for products are elided for space). All parts of the CSS file or
the rendering, except the width and height of text boxes (see
Section @, can be replaced by holes (7), and Cassius will
solve for the values of these holes automatically.

unspecified by C'. Building on Cassius, we prototyped the first
such verification tool for CSS. Figure [3| shows an example
stylesheet C and property P (3b) consumed by our
verifier. Given these inputs, the verifier encodes —P as
an assertion on the holes in the symbolic layout B that
corresponds to C' and D. The holes in the layout represent
parameters that are unspecified by C—in our case, the size
of the browser window, or viewport. The resulting declarative
layout problem is passed to Cassius, which searches for a
completion of the holes that violates P. If a completion exists,
the verifier converts it to a concrete counterexample layout
(Figure[3d) and presents the counterexample to the developer.
If not, all possible renderings of C' and D are guaranteed to
satisfy P.

2.3 Debugging Layouts

To repair a layout bug, such as the product container being
too small in Figure [3d} the developer first needs to isolate its
cause—a fault in the input stylesheet or document. In this
paper, we focus on stylesheet faultsE] Localizing these faults
with an imperative browser involves a manual modify-and-
check process, in which individual stylesheet constraints are

2We believe, however, that our framework can be extended to support
localization of faults in the document structure as well.

Ya € B,b € B,

(stylesheet B .
a.elt.tag = main

((tag main)
[width (% 100)1)
((tag div)
[width (px 200)]
[height (px 200)]
[float leftl))

A b.parent = a
= contains(a, b)

(b) Checking that all product
(a) An incorrect stylesheet: no icons lie within the grid con-
float property on main. tainer.

(layout counterexample

(layout C (LVIEW :w 400]
([VIEW ([BLOCK ...]
:w (between 200 1920)] ([BLOCK ...]
([BLOCK ...] ([BLOCK ...1 ...)
([BLOCK ...] ([BLOCK :w 400 :h 0
([BLOCK :w ? ...]1 ...) :x 0 :y 16]
([BLOCK ...] ...))

([BLOCK ...1 ...)))) ([BLOCK ...]1 ...)))))

(©) (d)

Figure 3: A prototype CSS verification tool built on top of
Cassius. The same HTML document as in Figure[I]is used,
but with an incorrect stylesheet (a) that fails to guarantee that
the container expands to contain all products (b). Given a
choice of the browser window width (c]), the verifier finds a
counterexample @) where the property does not hold.

weakened or strengthened until the original bug disappears
from the resulting layout, without introducing new bugs.
With a declarative browser, the fault localization process
is automated by unsatisfiable core extraction. Using Cassius,
we built a prototype debugger that takes as input a concrete
stylesheet C, document D, layout B, and the layout param-
eters U in B (e.g., the height of the product container in
Figure [3d) that violate the desired property P(B(7)). The de-
bugger converts these inputs into an unsatisfiable layout prob-
lem in two steps. First, it translates B into a symbolic layout
B’ by replacing the value of each v; € ¥ with a fresh hole h;.

—

Second, it generates the assertion P(h) A A\, _j hi = B(v;).
By construction, there is no way to complete h so that this
assertion is satisfied for B’, C, and D. Invoking Cassius on
such a problem produces an unsatisfiable core—a small sub-
set of the constraints in C', and in the CSS semantics, that is
responsible for the violation of P(¥). Our debugger projects
this core onto C' and pretty-prints it as shown in Figure 4]

2.4 Synthesizing CSS from Examples

Having detected and localized the fault in our toy web page
(Figures [3H4), we now turn to the problem of repairing the
stylesheet so that the product container expands to contain
the product icons. To automate this task, we used Cassius
to implement a CSS sketching tool that takes as input a
stylesheet with holes and a set of document-layout examples,

main {background:gray; height; fleat}
div { float:left; font-size:144pt;
width:200px; height:200px; }

Figure 4: CSS debugger output for the stylesheet, document,
and counterexample from Figure|3| The localized fault con-
sists of both set properties (the float property of <div>), and
unset properties (the float and height properties of <main>).

main {background:gray;
height:?; float:7}

div {float:7;
font-size:144pt;
width:200px;
height:200px; }

main {background:gray;
float: left}

div {float:left;
font-size:144pt;
width:200px;
height:200px; }

(a) A stylesheet sketch with ex- (b) The completed stylesheet
pression holes. found by a synthesizer.

Figure 5: The stylesheet properties identified by a CSS
debugger (Figure[) are replaced with expression holes, which
the synthesizer fills. Note that the synthesizer ultimately
decides not to set the height property.

and fills the holes so that the resulting stylesheet renders
each document to the corresponding layout. A stylesheet
sketch (Figure [5a) contains holes which stand for unknown
CSS syntax, while a document-layout example consists of
a document and its concrete rendering. The synthesizer
translates the stylesheet sketch and the document-layout
examples into a declarative layout problem using a standard
reduction (Solar-Lezama et al.|2006) of expression holes
to numeric holes. If Cassius finds values for the numeric
holes, the synthesizer lifts them into a valid completion of
the stylesheet sketch. In our running example, the synthesizer
repairs the buggy stylesheet from Figure [3a]to produce the
stylesheet shown in Figure [5]

3. CSS Semantics

A key feature of Cassius is a declarative formalization of a
substantial fragment of the CSS semantics. The complete for-
malization is publicly available in machine-readable form[ﬂ
This section presents the core concepts of web page layout,
as formalized in Cassius, highlighting design decisions that
enable efficient encoding of the layout process in the theory
of linear real arithmetic.

Cassius derives its specification of CSS layout from the
W3C CSS 2.1 standard (W3C|2007). The standard describes
CSS via an abstract algorithm (Figure[6). Given an HTML
document and a CSS stylesheet, the algorithm computes a
layout (6d), which is a set of boxes with known position
and size. This computation takes as input the document,

3 Athttps://github.com/uwplse/cassius

https://github.com/uwplse/cassius

h’lgm(lj html
0 bod
S p y ody
line
. " "Our products:"
main Omain
div div
iine,
div div
Wine,
div div
line,
div div
q@é{ne
"Bn

-Op
4gliaéll'ne
"Buy now!" "Buy now!"

(c)

Figure 6: Layout converts
HTML into a tree of ele-

" |
P~
Il = ||| ments @). The tree of el-
N =g
I |

ements generates a tree of
boxes (6p), which includes
block, line, and text boxes,
and this tree is broken into
flow trees (6c). A position
and size is then computed for
every box, resulting in the

layout (6[1).

represented by a tree of elements (6p); constructs a tree of
layout boxes from the element tree and stylesheet rules (@3);
and arranges the resulting boxes into flow trees (6f), from
which sizes and positions for each box (i.e., the layout) can
be computed. Cassius is a specification of this abstract layout
algorithm, describing the values computed for each box and
the rules by which these values are computed.

The Cassius specification is declarative: it specifies a rela-
tion on the HTML elements £, CSS rules R, and the boxes
B that form the final layout. As demonstrated in Section
such a declarative formalization provides a versatile platform
for building semantic tools: it can be used for verification (by
specifying £ and R and solving for B), synthesis (by specify-
ing B and &, and sketching R), or debugging (by specifying
&, R, and B, and computing unsatisfiable cores). In the rest
of this section, we describe the fragment of CSS implemented
by Cassius; the representation of £, R, and B; our formal-
ization of the CSS layout algorithm; and the light but crucial
restrictions on the use of floating boxes that make automated
reasoning tractable.

3.1 Supported Fragment of CSS

Cassius specifies layout for a fragment of CSS level 2.1.
The specification covers the cascading rules and the box
model, including the details of box generation, block and
inline boxes, floating and in-flow boxes, and line boxes. This

forms a substantial fragment of CSS, and suffices to lay out
fragments of real-world websites. With the fragment of CSS
currently specified, additional CSS features could be added
in a straightforward manner.

The Cassius formalization focuses on the core layout
algorithm. As such, it omits the semantics of CSS rules
that do not affect layout (e.g., font and color rules). It also
omits the modeling of layout features that are difficult to
formalize but easy for a client tool to provide (e.g., font
metrics, line breaking, and hyphenation). Finally, the CSS
standard describes a rich universe of CSS selectors; Cassius
models only tag name, identifier, and universal selectors. Our
implementation simply ignores the CSS properties that are
not modeled—they can appear in an input to the Cassius
declarative browser, but their semantics will not be considered
by the underlying SMT solver.

3.2 Representing Elements, Rules, and Boxes

Cassius specifies CSS layout as a relation between a tree
of elements &£, CSS rules R, and the layout B. The input
to Cassius is a representation of these three entities. The
elements & are given by an abstract syntax tree (Figure 2p),
where each node is labeled with an HTML tag and an optional
identifier, or is a string of text. The CSS rules R are given
by a list of rule blocks (Figure 2b), each of which contains a
selector and a collection of property-value pairs. The selector
identifies the elements in £ that are styled by a given rule.
The selector and properties can be given as holes—undefined
values that Cassius will solve for. Finally, the layout 5 is
represented by a set of boxes, arranged in a tree (Figure [2).
Each box is annotated with the box type (root, block, inline,
line, or text); the element e € £ from which it was generatedﬂ
its position, width, and height; and the width of the border on
each side. Any of these fields can be holes except width and
height on text boxesE]

3.3 CSS Layout

The Cassius specification of CSS layout follows the high-
level structure of the abstract layout algorithm described in
the CSS standard.

CSS Rules A rule r € R is a map from a subset of the
CSS properties P to a value for each property. We write
p € r to denote that the rule r specifies a value for the
property p, and we write r[p] for that value. The value r[p] is
either the distinguished constant inherit or it is drawn from a
property-specific type. Each rule has an associated selector,
r.selector, which can be the universal selector *, an HTML
tag, or an identifier. Selectors define which elements a rule
applies to. Rules are also associated with metadata (such as

4Some boxes are not generated by an element, such as line and text boxes or
“anonymous” block box. These boxes are annotated as anonymous.

5 Since Cassius does not model font metrics, the width and height of text
boxes must be provided by tools that build upon Cassius, for example by
rendering the text and measuring its size.

their position in the stylesheet) that influence cascading, as
described below.

Elements Every element has a tag and an optional identifier,
which are modeled as opaque symbols. A tag specifies the
type of an element, while an identifier gives it a unique name.
Both tags and identifiers are used for determining which
rules apply to an element: the wildcard selector applies to
all elements, and the tag name and identifier selectors apply
to those elements that have the given tag name or identifier.
Elements are arranged in an ordered tree, giving the usual
meaning to the notions of the next, previous, first, and last
siblings of an element. Each element also has a computed
style, which maps every CSS property to a value. We write
e[p] for the computed value of the property p for the element
e. This value is derived from the rules R through a process
called cascading.

Cascading The cascading process determines the computed
value e[p] of every element e € £ and property p € P.
Cassius implements this process declaratively. If no rule in R
both applies to e and specifies a value for p, then e[p] is set
to a property-specific default value. Otherwise, e[p] = r[p),
where 7 is the highest scoring rule that sets the property
p and whose selector matches e, ranked according to the
scoring function from Section 6.4.3 of the CSS standard.
This function uses rule metadata to break ties between rules
with equally specific selectors. The inherit value for CSS
properties is also resolved during cascading.

Boxes The CSS standard defines three types of boxes—
block, line, and inline. For modeling convenience, Cassius
defines four additional types of boxes: root boxes, which
represent browser windows; text boxes, which abstract text
rendering; and opaque boxes, which abstract the layout of
elements (e.g., tables) that are outside of our fragment of the
CSS semantics. The root and text boxes are implicit in the
CSS standard.

Like elements, boxes are arranged in an ordered tree,
giving each box a parent, children, and siblings. Every box
also has a width, height, (z,y) € R2 position, and an element
from which it was generated. These values are computed
based on the margin, padding, and border width in each
direction, as specified by the CSS box model. Cassius models
all parts of a box explicitly, as well as the rules for computing
box layout, which differ for block boxes, inline and text boxes,
and line boxes.

Block Boxes Block boxes can be either in-flow or floating,
and they are generated from block-level elements, such as
paragraphs (<p>). In-flow boxes take up all the available
horizontal space (in their parent container) and are laid out
one after another vertically. Floating boxes are placed to the
left or right of other boxes, with text flowing around them.
The CSS standard prescribes a complex set of rules
for computing the positions and sizes of block boxes. The
computation involves partitioning the box tree into a forest

of flow trees, computing used values of box properties, and
collapsing margins of certain boxes. Imperative browsers
must carefully sequence this computation. For example, the
width of boxes is determined in a top-down pass, while their
height is determined in a bottom-up pass, since the height
of an element might depend on the size and position of its
children.

Because the Cassius semantics is declarative, it dispenses
with the need for sequenced computation of box properties.
Instead, it simply constrains the final value of each property
with a formula. For example, Cassius specifies the x position
of an in-flow block box to be the sum of the parent’s x
position, left padding and border, plus the box’s left margin:

Vb € B, block-box(b) A in-flow(b) =
b.x = b.parent.left-content-edge + b.margin-left

Our machine-readable specification of block layout distills
36 pages of the CSS standard into just 790 lines of code.

Line Boxes Line boxes are generated when a block box
contains inline or text boxes. Each line box represents a line
of text, and all of its siblings are also line boxes. Usually,
a line box spans from the left to right edge of its parent’s
content area. However, line boxes shrink to avoid floating
boxes. For example, the following constraints forces line
boxes to avoid block boxes that float to the right:

Vb € B, f € B,line-box(b) A f.element[float] = rightA
is-preceding-floating-box(f,b) =
if b.top-margin-edge < f.bottom-margin-edge
then b.right-margin-edge = f.left-margin-edge
else b.right-margin-edge = p.right-content-edge

Line boxes also align their children to the left, right, or center,
depending on their parent’s text-align property.

Browsers generate line boxes with a line breaking algo-
rithm, which breaks text into lines to achieve a visually pleas-
ing result. Different browsers use different line breaking al-
gorithms, and the CSS 2.1 standard does not specify any
constraints on this algorithm. As a result, Cassius does not
constrain line breaking in any way, instead relying on the in-
put to contain pre-broken linesE] This modeling choice does
not affect either synthesis or debugging, since the full layout
(including the desired line breaks) is available in these tasks.
It may, however, cause a verification tool to produce false
positives—layouts that violate a desired property under our
declarative semantics but not on any imperative browsers,
which constrain line breaking. We have found such false
positives to be rare in practice (see Section [3)).

6 Since line breaking depends on the fonts used on the page, the language
the page is written in, and dictionaries of language-specific layout rules,
modeling line breaking in Cassius would be difficult and would likely cause
severe performance degradation.

Inline and Text Boxes Inline and text boxes are always
descendants of line boxes. They are laid out left to right, each
lying to the right of the previous box. Cassius specifies this
horizontal layout as follows:

Vb € B, text-box(b) A is-box(b.previous) =
b.left-border-edge = b.previous.right-border-edge (1)

Cassius does not model the height and width computation
for text boxes, which requires access to font metrics. These
values must be provided by client tools. CSS requires left (and
right) padding, margins, and borders to only apply to the first
(and, respectively, last) boxes generated by an inline element
when that inline element is split over multiple lines. Layout
of inline boxes thus requires checking whether the box is
the first or last box generated by its element, and applying
margins, borders, and padding accordingly.

Opaque Boxes Many websites use features of CSS that are
outside the subset that Cassius supports. To enable client tools
to reason about these features, Cassius provides an escape
hatch from its CSS semantics: an element can generate an
opaque box, whose position is not related to any CSS proper-
ties or to any other boxes. Whether an opaque box floats is
also not constrained. This lenient encoding of constraints on
opaque boxes ensures that we allow any likely behavior of
unknown CSS properties. Client tools can use assertions to
constrain the behavior of these boxes as needed.

3.4 Restrictions on Floating Boxes

While it is possible for a declarative semantics to fully
specify the behavior of floating boxes, such a specification
would not be amenable to efficient automated reasoning.
Because a floating box may affect the layout of every other
box, and every block element can generate floating boxes,
expressing these interactions in a quantifier-free logic would
be prohibitively expensive. In particular, every float constraint
in our semantics (such as Rule[T]in Section[3.3) would lead
to O(|B|?) constraints in a quantifier-free logic.

To enable efficient automated reasoning, the Cassius se-
mantics imposes four restrictions on floating boxes, illustrated
in Figure[/| The restrictions ensure that the layout of every
box depends on the layout of the floating box closest to it
in an in-order traversal of the box tree, rather than the lay-
out of all floats. We do not believe these restrictions to be
onerous, since the forbidden layouts can be often be achieved
by adding extra elements to the document. Section 4{ shows
how Cassius exploits the floating box restrictions to asymp-
totically reduce the size of its SMT encoding. Without them,
our declarative browser cannot solve the layout constraints
for any of the benchmarks in Section [5]

4. SMT Encoding

Cassius specifies the semantics of CSS layout declaratively,
as a set of formulas expressed in the machine-readable

— T > —
2 —— —
— ——
—— —
— ——
—— ——
— ——
—— ——
— ——

(a) (b)

1 —— 1 — | 2
— —
—— —
— —
—— —

—

2 ——

——
—

g

(c)

<div>1</div><div>2</div>Text text text

Figure 7: Interactions between floating boxes disallowed in
Cassius. Each diagram is a possible layout of a document
containing two floating boxes followed by text. In (a), the two
floating boxes overlap, and the text must wrap around both.
In (b), two floating boxes stack horizontally where the later
box is smaller than the previous box. In (c), the second box
is so wide it must wrap to the next line, but text continues to
fit beside the first box. In (d), text flows around a left-floating
and right-floating box. By disallowing these four types of
interactions, text layout only relates a text box to its previous
floating box. Note that each layout is achievable with Cassius;
the HTML would have to be modified to rearrange the order
of elements or add an extra block element around the text and
the second div.

SMT-LIB2 (Barrett et al.|2015) format. This specification
closely parallels the description given in Section [3} quantified
formulas define layout constraints on all boxes or all elements,
with layout rules for different types of boxes encapsulated in
functions. Such a high-level encoding has the advantage of
being easy to audit for correspondence to the CSS standard.
But it does not consistute a practical implementation of a
declarative browser.

To provide a practical framework for building solver-
aided layout tools, Cassius works by reducing the high-level
semantics of a given declarative layout problem to the theory
of quantifier-free linear real arithmetic (LRA). As described
in Section 2] Cassius takes as input a (symbolic) stylesheet, a
set of documents with their corresponding (symbolic) layouts,
and, optionally, a set of assertions on the stylesheet and
layout holes. These inputs are used to instantiate (or, ground)
the quantifiers in the high-level semantics, yielding a set of
quantifier-free LRA formulas. The resulting formulas are then
simplified, fed to an off-the-shelf SMT solver (23 (De Moura
and Bjgrner|2008))), and the solver’s output is used to either

fill the holes in the input or explain why a solution does not
exist. We describe these steps in more detail below.

4.1 Grounding

In principle, it is easy to produce a quantifier-free encoding
of the Cassius semantics for a given stylesheet C', a document
D, and a layout B. We simply expand each universally
quantified layout rule into a conjuction of ground (quantifier-
free) constraints. For example, a rule of the form Vb &
B,e € £, F(b,e) becomes a ground formula of the form
Necp yep F(z,y), where 2 and y range over all boxes in B
and elements in D, respectively. In practice, however, naive
grounding produces a large formula that overwhelms the
solver, especially when applied to float layout rules.

Cassius combats this encoding explosion by exploiting
the float restrictions from Section [3.4] which ensure that the
layout of every box can be computed from the layout of the
preceding floating box in an in-order traversal of the box
tree. The high-level semantics expresses this computation by
specifying layout rules in terms of a float predecessor relation,
is-flow-pred. For example, the following rule computes the
top border edge (tbe) of a block box from the bottom border
edge (bbe) of its in-flow predecessor:

Vb1, be € B, is-flow-pred(bs, b1) A block-box(b;) —
by.tbe = by.bbe + margin-gap(bs,b1) (2)

Instead of reducing such rules into equivalent ground formu-
las of size O(|B|?), Cassius reduces them into equisatisfiable
ground formulas of size O(|B]), by introducing a small set
of auxiliary uninterpreted functions.

The key idea is to use the auxiliary functions to rewrite
each high-level layout rule into a formula with at most one
universal quantifier (over boxes). For example, pfs is an
auxiliary function that maps each box to its float predecessor.
Using pfs, Cassius rewrites our sample rule into the
following formula:

Vb, € B,let by = by.pfsin block-box(b;) =
by.tbe = by.bbe 4+ margin-gap(bs,b1) (3)

The resulting formula is then simply ground into a conjunc-
tion of size linear in |B|.

To ensure that this transformation preserves equisatisfia-
bility, Cassius constrains the interpretation of each auxiliary
function with suitable axioms. Thanks to a careful selection
of auxiliary functions, these axioms can also be expressed
using at most one universal quantifier. For example, pfs is

constrained by the following axiom:

Vb € B,
if —b.previous-sibling
then b.pfs = nil
elif —floating-box(b.previous-sibling)
then b.pfs = b.previous-sibling
else b.pfs = b.previous-sibling.pfs

Thanks to the choice of auxiliary functions, the ground
encoding as a whole—including both the transformed rules
and the auxiliary axioms—is linear in |B|.

The effectiveness of our grounding approach hinges on
finding a small set of auxiliary functions that are both effi-
ciently axiomatizable and sufficient to eliminate nested quan-
tification (over boxes) from the high-level semantics. Our
ability to find such a set for the Cassius semantics is a di-
rect consequence of the float restrictions from Section [3.4]
Intuitively, these restrictions define a subset of CSS that can
be laid out with a non-deterministic, incremental version
of the abstract layout algorithm (Figure [6)) described in the
CSS standard. The auxiliary functions introduced by Cassius
encode the auxiliary information that the incremental algo-
rithm would need to track in order to compute the layout in
one pass, given a correct (angelically chosen) order in which
to traverse the tree of boxes. Our grounding approach can
thus be understood as encoding an arbitrary execution of this
incremental algorithm on a specific (symbolic) stylesheet,
documents, and layouts.

4.2 Constraint Simplification and Solving

In the final stages of declarative layout, Cassius simplifies the
ground encoding of the semantics using a custom formula
optimizer, and passes the resulting constraints to Z3. The
optimizer avoids simplifications that interfere with unsatisfi-
able core extraction, and embeds metadata into the encoding
(using Z3’s named constraints) that relate the optimized and
ground semantics. This information is used to lift the solver’s
output into a solution to the declarative layout problem re-
ceived by Cassius.

5. Evaluation

The previous sections described Cassius, a formal specifi-
cation of CSS semantics with an efficient encoding in the
theory of quantifier-free linear real arithmetic. This section
demonstrates that the Cassius semantics faithfully models the
CSS standard; that it is rich enough for practical use; and
that its encoding to LRA is efficiently-solvable, enabling easy
creation of semantic tools for CSS that work on fragments of
real web pages.

5.1 Correctness of the Cassius Specification

To ensure that Cassius correctly captures the W3C CSS 2.1
standard, we compared it to Mozilla Firefox on a set of 2075

standard conformance tests (CSSWG|2011) for imperative
browsers. Two experiments were done. In the first experi-
ment, we checked that the Cassius semantics for CSS accepts
the rendering produced by Firefox, demonstrating that this
semantics is sufficiently weak (with respect to Firefox). Our
results show that Cassius agrees with Firefox on all but six
tests, on which Cassius produces correct layouts according to
the standard, while Firefox produces slightly different layouts
due to rounding error. In the second experiment, we checked
that the Cassius semantics for CSS rejects other renderings by
using a form of solver-aided mutation testing. Only 0.7% of
mutants are accepted by Cassius, largely due to font metrics,
which Cassius does not model. These results show that the
Cassius semantics is sufficiently strong in practice, despite our
liberal modeling of line breaking (Section [3.3). We describe
our experimental setup and results below.

Methodology The official conformance tests (CSSWG
2011) measure the interoperability and correctness of CSS
layout implementations. Tests exist for every section of the
CSS standard, including many aspects of CSS layout (such as
fonts, colors, or print media) not described by Cassius. The
Cassius fragment of the standard is covered by 2075 confor-
mance tests. Each test (e.g., Figure[§) consists of a web page
with an English-language description of the expected output.
Tests also have an associated reference page that achieves
the expected layout using a simpler stylesheet. The tests are
small, rarely consisting of more than a dozen elements and
a few stylesheet rules. Furthermore, the W3C maintains a
public website through which volunteers manually compare
a browser’s rendering of the test to the instructions and to the
reference page.

5.1.1 Acceptance Tests

We applied Cassius to all 2075 relevant conformance tests.
To check that it produces the expected renderings, we use
the Mozilla Firefox 41.0.1 browser as a test oracle, since
volunteers have already checked that Firefox passes these
tests. For each test, we employ a script (based on the CS-
SOM JavaScript API) to extract the layout generated by Fire-
fox. This fully-concrete layout, plus the document tree and
stylesheet, are fed to Cassius to check that its specification
allows the given rendering. Note that such a check exercises
our encoding even with fully concrete inputs: Cassius uses
the solver to search for a trace of its non-deterministic layout
algorithm that admits those inputs.

Results The results are shown in Table [T The tests are
grouped by the section of the standard that they cover. Tests
were run on an Intel Core i7-4790K quad-core CPU, with a
version of Z3 built from the opt branch on 11 March 2015.
Of the 2075 tests, Cassius agrees with Firefox on all but six;
the disagreements are described below. The full suite of tests
took 138 minutes to run, for an average of less than three
seconds per test.

Test passes if there is space between the blue and orange lines.

1 Filler Text

Figure 8: A test from the W3C CSS 2.1 conformance tests;
this one is named padding-left-applies-to-008. Tests pass or
fail based on the English-language instructions provided on
each page or by comparison to a reference page that achieves
the desired layout using a different, simpler stylesheet.

CSS Standard Test group Accept Reject
§8.1 Box dimensions 2 0
§8.3 Margins 218 0
§8.3.1 Collapsing 12 1
§8.4 Padding 274 1
§8.5.1 Border width 278 2
§8.5.2 Border color 734 0
§8.5.3 Border style 71 0
§8.5.4 Border interactions 113 0
§8.6 Inline 2 0
§9.2.2 Inline boxes 2 0
§9.4.1 Block formatting 14 0
§9.4.2 Inline formatting 25 0
§10.2 Width 70 1
§10.3.1 Inline non-replaced 3 0
§10.3.3 Block non-replaced 6 0
§10.4 Min-/max-width 67 0
§10.5 Height 64 1
§10.6.1 Inline non-replaced 1 0
§10.6.3 Block non-replaced 0
§10.6.7 Flow roots 1 0
§10.7 Min-/max-height 66 0
§10.8 Line height 1 0
§10.8.1 Leading 39 0

Table 1: The results of applying Cassius to the W3C test
suite. The “Accept” and “Reject” columns give the number
of tests on which Cassius does and does not accept Firefox’s
rendering. See the text for a description of the cases where
Firefox and Cassius disagree.

Disagreements Between Cassius and Firefox On six tests,
Firefox and Cassius disagree. The cause of the disagreement
is rounding error within Firefox, and Cassius’s rendering is
correct according to the CSS standard.

There are two sources of rounding error in Firefox. First,
Firefox represents on-screen lengths as fixed-point values
rounded to a sixtieth of a pixel. This accuracy is usually
sufficient to render web pages properly, since errors of
sixtieths of a pixel are not visible. In some cases, the true
position of a point on the screen is not an exact multiple of
a sixtieth of a pixel; for example, the test margin-collapse-
032 creates a box whose padding is 2% of 1898 pixels, that
is, 37.96 = 2277.6/60 pixels. Firefox rounds the padding

of the box to 37.95 pixels. Since Cassius uses real (infinite-
precision) arithmetic, per the CSS standard, its specification
does not admit this rounded value, thus disagreeing with
Firefox. Second, Firefox rounds border widths and text
positions to the nearest pixel, to ensure that text can be
properly hinted and that borders appear to have the same
width on both sides of any box. Modifying each test to correct
the rounding errors results in a passed test.

5.1.2 Rejection Tests

To check that Cassius rejects invalid renderings, we mutated
the suite of 2075 acceptance tests as follows. For each test, we
randomly chose a block box’s width, height, or x or y position,
and replaced it with a hole. Cassius was then asked to find a
rendering of the page that differs from Firefox’s in the chosen
measurement. Finding such a rendering represents a failure—
a test case on which the Cassius semantics is weaker than that
of Firefox. This procedure was repeated ten times for each
test in the test suite, resulting in 20750 total attempts to find
an invalid rendering accepted by Cassius.

Results Of the 20750 mutants, Cassius accepted only 152,
for an overall success rate of 99.3%. We manually investi-
gated every accepted mutant, and found that they were all
accepted due to two causes. The majority of the mutants (126
out of 152) were accepted because Cassius does not model
font metrics. In particular, Cassius accepts renderings that
move the boundary between two lines of text. An impera-
tive browser rejects these renderings by computing the A
and D font metrics, which determine the height of a line
of text. The remaining mutants (26 out of 152) are due to
non-determinism in the CSS 2.1 algorithm for computing
the shrink-to-fit width of floating boxes. Cassius treats the
non-determinism in the specification by accepting several
renderings, allowing Cassius to sometimes find renderings
different from the one found by Firefox. Several drafts for
the CSS 3 standard fully specify the shrink-to-fit algorithm,
so Cassius could be updated to remove this non-determinism
once the draft standards are accepted.

5.2 Practicality of the Cassius Specification

Tests against the W3C test suite show that Cassius faith-
fully formalizes its fragment of the CSS semantics, closely
matching the Firefox implementation. To demonstrate that
this fragment is practically useful, we applied Cassius to the
layout of five large, popular websites: a Google results page;
a Wikipedia article; the Yahoo! home page; a Baidu results
page; and the Amazon home page. Our results show that all
of these web sites are expressible in the Cassius fragment of
CSS, with minor preprocessing performed by client tools.

Methodology We performed four experiments on each of
our five sample websites: checking whether Cassius accepts
the Firefox’s rendering of the website; verifying the website
against a desired property; debugging the Firefox layout

,/\/\/\/\/

(

Figure 9: The truncated Wikipedia page used in our bench-
marks. Each rectangle is one box; many overlap. The
boxes show the overall design of the page, shared across
Wikipedia’s articles. The sharp red line marks where a seg-
ment of the rendering, containing the featureless middle of
the image, was removed.

with respect to an undesired property; and synthesizing a
stylesheet for the website from a sketch.

As for the W3C conformance tests, we used Firefox
to render each page, automatically capturing the resulting
layout and all applicable stylesheet rules. We then used a
simple preprocessor to automatically convert the extracted
layout, CSS, and HTML into a declarative layout problem
accepted by Cassius. Our preprocessor ignores unsupported
CSS properties[] and it treats unsupported boxes (such as
tables) as opaque. Unsupported selectors are treated as a
disjunction of identifier selectors: the preprocessor gives
every matching element a unique identifier, and it creates
one copy of the selected rule for each matched identifier. The
preprocessor also replaces all boxes below a given depth in
the layout tree with opaque boxes, effectively truncating the
page. This truncation is necessary for Cassius to terminate
within an hour. We chose the depth parameter manually so
that the truncated page retains the large-scale structure of the
corresponding benchmark page, while enabling faster layout
times; Figure[9]shows an example of a truncated page. Finally,
rounding errors due to Firefox were manually corrected.

5.2.1 Acceptance Tests

For each benchmark page, Cassius admits the rendering made
by Firefox. Detailed results are given in Table[2] including the
running time of Cassius, the size of the layouts and stylesheets
reasoned about, and the size of the constraints generated by
Cassius. The conformance checks for these pages are slower

7 Except the max-width property, which replaced the width property when
set.

Elt Box Rule Size Time

Amazon 18 54 16 23k 14.9+2.8s
Baidu 38 51 15 178k 11.9+14.1s
Google 32 35 17 158k 11.5+3.7s
Wikipedia 45 50 30 215k 13.9+42.5s
Yahoo! 40 39 26 263k 46.6+9.0s

Table 2: Accepting the rendering of five popular websites
with Cassius. The “Elt”, “Box”, and “Rule” columns count
the number of non-content elements and applicable CSS
rules, with duplicate rules (due to unknown selectors) counted
once. “Size” counts the number of expressions and declared
variables in the SMT problem. The “Time” column is broken
into time to generate and solve the constraints.

than for the W3C tests, but they still take only a few seconds
each.

5.2.2 Tool Building atop Cassius

To demonstrate the utility of Cassius as a tool-building
framework, we used it to prototype the three semantic tools
for CSS described in Section [2} a verifier, a debugger, and
a synthesizer. By building on top of Cassius, all three tools
took just four days to implement, requiring less than 300 total
lines of code. We evaluated each of them on the five websites
described above. Our results show that, even with our modest
implementation effort, these tools work on fragments of real
websites, producing results in a matter of minutes.

1. To evaluate verification, we measured the time needed
to verify that no text boxes or links (<a> elements) are
overlapped on a website, for any viewport size between
800 and 1920 pixels.

2. To evaluate debugging, we paired each website with an
unsatisfiable assertion negating the position and size of
randomly-chosen boxes. We passed these pairs to the
debugger and measured the running time, the size of
the resulting unsatisifiable core, and the number of CSS
properties identified as relevant.

3. To evaluate synthesis, we replaced the bodies of 1-25
randomly-chosen rules with expression holes and mea-
sured the time to complete the resulting sketches.

Results Verification of each site took between 2 and 12
seconds (Table[3). Debugging produced small cores and iden-
tified few CSS properties: debugging time ranged from 1-5
seconds and identified cores of 2—7 CSS rules and 4-10 CSS
properties (also in Table[3). Synthesis time was substantially
longer, but it grew slowly with the number of holes (see
Figure [10), with the fastest stylesheets synthesizing 25 ex-
pression holes in minutes. Note that the Amazon stylesheet
is particularly difficult for Cassius to synthesize. We suspect
this is due to the inclusion of selectors that match many ele-
ments, which makes the rule bodies of those selectors harder
to synthesize.

300 t

100 } o i IY IIi

SET I
2] :
E10f 3 o ! f
] 1@
3.
1
1 3 6
58 174 348

Number of rule bodies and primitive holes

Figure 10: Each bar represents ten random sketches of one
website (labeled above), with a fixed number of expression
holes. Minimum and maximum outliers are removed and the
median is labeled with a thick dot. A 5-minute timeout was
used for all experiments, and all sample sets that included
timed-out runs are discarded and not shown.

Verify | Debug Rules Properties
Amazon 4.9s 0.7s 1 2
Baidu 3.7s 3.2s 5 6
Google 5.7s 2.7s 3 3
Wikipedia 2.0s 0.7s 3 4
Yahoo! 12.2s 5.5s 1 1

Table 3: Debugging and verification time for five popular
websites using the Cassius prototype tools. The debug time
lists just constraint solving time; constraint generation time
identical to that in Table 2}

5.3 Scalability of Cassius in the Presence of Floats

The tests with real-world website fragments and the W3C
conformance tests show that Cassius produces constraints
that can be solved quickly, with verification, debugging,
and synthesis. But none of these benchmarks makes heavy
use of floats. To evaluate the scalability of our encoding
in the presence of floats, we generated 14 web pages with
a variable number of elements by changing the number of
products in the running example (Figure[I). The resulting
web pages contain a simple CSS stylesheet of three rules
with expression holes for their bodies (plus two rules from
Firefox’s browser stylesheet), and an HTML document with
0-13 floating boxes. Cassius was asked to fill each stylesheet
sketch, and the results are graphed in Figure [TT} Because
almost all elements float, synthesis is slower than for the
websites from Section [5.2] However, it still completes within
a few minutes. Without our encoding optimizations based
on float restrictions, none of the benchmarks in this paper
(including the small W3C tests) complete within an hour.

300 7 r

Time (s)

—_
o
I

I

I

3 4

1 4

10 13 16 19 22 25 28 31 34 37 40 43 46 49
Number of boxes

Figure 11: Synthesis time for increasing sizes of the run-
ning example document (Figure [I). The break in each bar is
constraint generation time; the top is total time. The unpre-
dictable nature of Z3 performance explains the variance in
solve time. Constraint preparation time increases smoothly
and linearly, while solve time increases unpredictably but
also slowly.

5.4 Ease of Extending Cassius

Over the course of preparing the Cassius semantics and
evaluating it on the websites from Section we ex-
tended Cassius multiple times to support new CSS prop-
erties. Cassius’s support for the text-align, overflow, position,
left/right/top/bottom, white-space, and box-sizing properties
were all added with minimal changes to the semantics and
with a few hours required to plan, implement, debug, and test
each extension. This experience suggests that future exten-
sion of Cassius can be done quickly, efficiently, and without
large-scale modification of the Cassius semantics.

6. Related Work

Cassius builds on a foundation of work in solver-aided
languages, and was inspired by work on web development
tools in the HCI community. The formalization of CSS further
builds on work in parallelizing web browsers.

Solver-aided Languages Solver-aided languages (Torlak
and Bodik|2013)) use SAT and SMT solvers to automate
programming tasks such as verification, debugging, and syn-
thesis of code. Boogie (Leino|2008) serves as a back-end
for general purpose program verification by using Z3 to
prove verification conditions (Leino[2010). Alive (Lopes et al.
2015) and PEC (Kundu et al.|2009) verify compiler opti-
mizations using an SMT solver. Batfish (Fogel et al.|[2015)
verifies the dataplane for Datalog programs. In each case,
verification conditions and program properties of a high-level
language are compiled to efficiently-solvable SAT or SMT
constraints. Cassius follows a similar architecture for CSS:
queries about CSS stylesheets, including synthesis and de-
bugging queries, are compiled to SMT constraints and solved
with Z3. Smten (Uhler and Dave|2014) and Rosette (Torlakl

and Bodik|2014) are solver-aided host languages—they trans-
late a programming language interpreter into a solver-aided
language backend. Unlike these general-purpose languages,
which aim at automating a wide spectrum of problems, Cas-
sius focuses on providing both a declarative semantics for
CSS and an efficient host platform for automating web page
layout.

Constraints in Web Design Using constraint solving for
layout has a long history, and applications to web page layout,
as a replacement for CSS, have been proposed (Badros et al.
1999). Like these techniques, Cassius views CSS files as a
set of constraints that are solved to lay out the page. Unlike
previous work, however, Cassius does not replace CSS or
modify existing browsers. Instead, it provides a mechanized
semantics for CSS, and as such, it could be used to compile
constraint-based layout languages to CSS.

Web Development Tools Several tools for automating as-
pects of web development have been proposed, especially
within the human-computer interaction (HCI) community.
Bricolage (Kumar et al.|2011) uses heuristics to transfer the
design of one web page to another; this requires matching
the nodes on two web pages with similar content, and then
transferring the stylesheet from one web page to another.
Webzeitgeist (Kumar et al.[2013)) uses similar techniques to
organize a corpus of common design elements across web
pages. SeeSS (Liang et al |2013) automatically tracks changes
in web page layout due to changes in CSS, to help developers
avoid introducing bugs as they modify CSS code. Further
afield from web development, ReVision (Savva et al.|2011)
applies machine vision to understand the structure of data
visualizations, and synthesize new visualizations of the same
data; similar tools (Harper and Agrawala|2014)) allow easy
modification of data visualizations built with the D3 library.
Remaui (Nguyen and Csallner||2015) uses machine vision,
optical character recognition, and heuristics to synthesize
Android application layouts from mock-ups. Tools have also
been built to identify redundant CSS rules, soundly account-
ing for rules that are only triggered by JavaScript modifica-
tions to a web page (Hague et al|2014). Cassius provides
automation facilities that complement these efforts, and in-
vestigating avenues for integration is an interesting direction
for future work.

Parallel Web Browsers Previous work (Meyerovich and
Bodik| 2010) has encoded a partial specification of CSS
as an attribute grammar. This specification is then used to
generate parallel execution schedules for web page layout.
Attribute grammars have also been used to synthesize data
visualizations (Hottelier et al.|2014), where the synthesis
selects between possible constraints on an element in the
visualization. Unlike prior formalization efforts, Cassius
specifies CSS semantics in the theory of (quantifier-free)
linear-real-arithmetic. The main advantage of this encoding
is the ability to easily add constraints that do not follow the

tree structure of the document, such as the specification of
floating elements, and to leverage off-the-shelf SMT solvers
for automated reasoning.

7. Conclusion

This paper presents Cassius, a new solver-aided framework
for automated reasoning about web page layout. Cassius
includes a declarative specification of a substantial fragment
of the CSS semantics, along with an efficient encoding of
that specification in the theory of quantifier-free linear real
arithmetic. This encoding exploits the observation that the
Cassius fragment of CSS is amenable to layout with a non-
deterministic incremental algorithm, whose semantics can
be expressed with a linear (rather than quadratic) number
of constraints. We demonstrate the utility of Cassius by
using it to prototype three solver-aided tools for CSS—a
verifier, debugger, and synthesizer—with under 300 lines
of code. Thanks to the efficiency of the Cassius encoding,
our prototypes run in minutes on fragments of real-world
stylesheets and documents.

Acknowledgments

We the anonymous reviewers for guidance and valuable
suggestions while preparing the final version of this paper.
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE-1256082.

References

G. J. Badros, A. Borning, K. Marriott, and P. J. Stuckey. Constraint
cascading style sheets for the web. UIST’15, 1999. doi: 10.
1145/320719.322588. URL http://doi.acm.org/10.1145/
320719.322588.

C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard:
Version 2.5. Technical report, Department of Computer Science,
The University of Iowa, 2015.

CSSWG. CSS2.1 test suite, 2011. URL http://test.cssug,

org/suites/css2.1/20110323/html4/toc.html|

L. De Moura and N. Bjgrner. Z3: An efficient SMT solver.
TACAS’08/ETAPS’08, 2008. URL http://dl.acm.org/
citation.cfm?id=1792734.1792766.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network
configuration analysis. NSDI'15, Oakland, CA, May 2015.
USENIX Association.

M. Hague, A. W. Lin, and L. Ong. Detecting redundant CSS rules
in HTMLS applications: A tree-rewriting approach. CoRR, 2014.
URL http://arxiv.org/abs/1412.5143.

J. Harper and M. Agrawala. Deconstructing and restyling d3
visualizations. UIST ’14, 2014. doi: 10.1145/2642918.2647411.
URLhttp://doi.acm.org/10.1145/2642918.2647411,

T. Hottelier, R. Bodik, and K. Ryokai. Programming by manipula-
tion for layout. UIST’14, 2014. doi: 10.1145/2642918.2647378.
URL http://doi.acm.org/10.1145/2642918.2647378.

R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer. Bricolage:
Example-based retargeting for web design. CHI’'11. ACM, 2011.
doi: 10.1145/1978942.1979262. URL http://doi.acm.org/
10.1145/1978942.1979262,

R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R.
Klemmer, and J. O. Talton. Webzeitgeist: Design mining the
web. CHI’13, 2013. doi: 10.1145/2470654.2466420. URL
http://doi.acm.org/10.1145/2470654.2466420.

S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct
using parameterized program equivalence. PLDI’09, 2009. doi:
10.1145/1542476.1542513. URL http://doi.acm.org/10}
1145/1542476.1542513|

K. R. M. Leino. This is Boogie 2. Technical report, Microsoft
Research, June 2008. URL http://research.microsoft)
com/apps/pubs/default.aspx?id=147643|

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. LPAR’10, 2010. URL http://dl.acm.org/
citation.cfm?id=1939141.1939161.

H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C. Lin, and
M. Y. Chen. Seess: Seeing what i broke — visualizing change
impact of cascading style sheets (CSS). UIST ’13, 2013. doi:
10.1145/2501988.2502006. URL http://doi.acm.org/10!
1145/2501988.2502006.

N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Prov-
ably correct peephole optimizations with Alive. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI’15, 2015. doi:
10.1145/2737924.2737965. URL http://doi.acm.org/10|
1145/2737924.2737965.

L. A. Meyerovich and R. Bodik. Fast and parallel webpage layout.
WWW’10, Raleigh, North Carolina, USA, 2010.

T. A. Nguyen and C. Csallner. Reverse engineering mobile appli-
cation user interfaces with remaui. In Proc. 30th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), ASE’15. IEEE, Nov. 2015.

M. Otto and J. Thornton. Bootstrap: the world’s most popular
mobile-first and responsive front-end framework, 2015. URL
http://getbootstrap.com/.

M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and
J. Heer. Revision: Automated classification, analysis and redesign
of chart images. In ACM User Interface Software & Technology
(UIST), UIST 11, 2011. URL http://idl.cs.washington|
edu/papers/revision,

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. ASPLOS XII, 2006.
doi: 10.1145/1168857.1168907. URL http://doi.acm.org/
10.1145/1168857.1168907.

E. Torlak and R. Bodik. Growing solver-aided languages with
Rosette. In Onward!, 2013.

E. Torlak and R. Bodik. A lightweight symbolic virtual machine for
solver-aided host languages. In PLDI, PLDI’14, 2014.

R. Uhler and N. Dave. Smten with satisfiability-based search. Oct.
2014. doi: 10.1145/2714064.2660208. URL http://doi.acm)
org/10.1145/2714064.2660208.

http://doi.acm.org/10.1145/320719.322588
http://doi.acm.org/10.1145/320719.322588
http://test.csswg.org/suites/css2.1/20110323/html4/toc.html
http://test.csswg.org/suites/css2.1/20110323/html4/toc.html
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://arxiv.org/abs/1412.5143
http://doi.acm.org/10.1145/2642918.2647411
http://doi.acm.org/10.1145/2642918.2647378
http://doi.acm.org/10.1145/1978942.1979262
http://doi.acm.org/10.1145/1978942.1979262
http://doi.acm.org/10.1145/2470654.2466420
http://doi.acm.org/10.1145/1542476.1542513
http://doi.acm.org/10.1145/1542476.1542513
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://doi.acm.org/10.1145/2501988.2502006
http://doi.acm.org/10.1145/2501988.2502006
http://doi.acm.org/10.1145/2737924.2737965
http://doi.acm.org/10.1145/2737924.2737965
http://getbootstrap.com/
http://idl.cs.washington.edu/papers/revision
http://idl.cs.washington.edu/papers/revision
http://doi.acm.org/10.1145/1168857.1168907
http://doi.acm.org/10.1145/1168857.1168907
http://doi.acm.org/10.1145/2714064.2660208
http://doi.acm.org/10.1145/2714064.2660208

W3C. Css basic box model, Aug. 2007. URL http://www.w3| ce-css/all/alll
org/TR/css3-box.

W3Techs. Usage statistics of CSS for websites, Nov.
2015. URLhttp://w3techs.com/technologies/details/

http://www.w3.org/TR/css3-box
http://www.w3.org/TR/css3-box
http://w3techs.com/technologies/details/ce-css/all/all
http://w3techs.com/technologies/details/ce-css/all/all

	Introduction
	Overview and Applications
	The Cassius Framework
	Verifying Layouts
	Debugging Layouts
	Synthesizing CSS from Examples

	CSS Semantics
	Supported Fragment of CSS
	Representing Elements, Rules, and Boxes
	CSS Layout
	Restrictions on Floating Boxes

	SMT Encoding
	Grounding
	Constraint Simplification and Solving

	Evaluation
	Correctness of the Cassius Specification
	Acceptance Tests
	Rejection Tests

	Practicality of the Cassius Specification
	Acceptance Tests
	Tool Building atop Cassius

	Scalability of Cassius in the Presence of Floats
	Ease of Extending Cassius

	Related Work
	Conclusion

