
Verified Peephole Optimizations for CompCert

Eric Mullen
University of Washington, USA
emullen@cs.washington.edu

Daryl Zuniga
University of Washington, USA
zunigad@cs.washington.edu

Zachary Tatlock
University of Washington, USA
ztatlock@cs.washington.edu

Dan Grossman
University of Washington, USA

djg@cs.washington.edu

Abstract
Transformations over assembly code are common in many
compilers. These transformations are also some of the most
bug-dense compiler components. Such bugs could be elim-
inated by formally verifying the compiler, but state-of-the-
art formally verified compilers like CompCert do not sup-
port assembly-level program transformations. This paper
presents Peek, a framework for expressing, verifying, and
running meaning-preserving assembly-level program trans-
formations in CompCert. Peek contributes four new com-
ponents: a lower level semantics for CompCert x86 syntax,
a liveness analysis, a library for expressing and verifying
peephole optimizations, and a verified peephole optimiza-
tion pass built into CompCert. Each of these is accompanied
by a correctness proof in Coq against realistic assumptions
about the calling convention and the system memory alloca-
tor.

Verifying peephole optimizations in Peek requires prov-
ing only a set of local properties, which we have proved are
sufficient to ensure global transformation correctness. We
have proven these local properties for 28 peephole transfor-
mations from the literature. We discuss the development of
our new assembly semantics, liveness analysis, representa-
tion of program transformations, and execution engine; de-
scribe the verification challenges of each component; and
detail techniques we applied to mitigate the proof burden.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed
to ACM.

Copyright c© ACM [to be supplied]. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

Categories and Subject Descriptors D.2.4 [Software/Prog-
ram Verification]: Formal Methods; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Mechanical Ver-
ification; D.3.4 [Processors]: Compilers

General Terms Languages, Verification

Keywords Formal Methods, Verification, Compilers, Coq,
CompCert, Peek

1. Introduction
CompCert is a practical, fully formally verified C compiler
with x86, PowerPC, and ARM back-ends. CompCert pro-
vides a machine checkable proof of semantic preservation
for every compilation pass. Thus, if the source program is
a legal C program and compilation succeeds, then the as-
sembly produced has the same observable behavior as the
source program. Previous work [9, 29] has repeatedly shown
that CompCert is empirically more reliable than traditionally
developed compilers, with multiple CPU-years of compiler
fuzzing resulting in zero bugs discovered within the verified
portions of CompCert.

Unfortunately, proving that every program transformation
in CompCert preserves program meaning is incredibly diffi-
cult. CompCert’s suite of optimizations has grown due to
prior research [20, 21, 24–26], but still is not as extensive
as other mature compilers. Adding optimizations is limited
by the effort required to verify them. Optimizations that are
often “relatively easy” to develop in a traditional, unverified
compiler can be extremely challenging to prove correct in
CompCert. This extra difficulty and how we mitigate it for
x86-assembly peephole optimizations in CompCert, is the
focus of our work.

Peephole Optimization Peephole optimization is a classic
part of the compiler optimizer’s toolkit [15, 22]. The ap-
proach scans an assembly program for a sequence of in-
structions matching a syntactic template and replaces it with
a faster, equivalent sequence. Simple examples include re-

placing the move of 0 into a register with a self-xor op-
eration, removing adjacent move instructions that together
have no effect, or choosing different instructions to increase
instruction-level parallelism (e.g., x86 has two ways to add
registers that each use different functional units).

Peephole optimizations are particularly challenging for
formal verification. They provide performance improve-
ments unavailable via higher-level compiler intermediate
representations because they can exploit low-level, architec-
ture specific details and “clean up” pathologies of low-level
code generation. They are challenging because the detailed
semantics of assembly language includes subtle side effects
on machine state. Peephole optimizations in unverified com-
pilers typically make unstated assumptions about invariants
that “happen to hold” in code generated by the compiler.

For example, as mentioned above, there are two ways to
perform addition in x86, and peephole optimizations can re-
place one with the other. But such transformations require
care, since the two forms of adding are not exactly equiv-
alent: one may set a carry-flag register that the other never
does. While other compilers may simply assume facts like
“the flag register is live only immediately after a cmp instruc-
tion,” we must verify a liveness analysis to ensure this detail.
Due to such implicit assumptions, along with the inherent
complexity of assembly semantics, peephole optimizations
have been deceptively tricky in practice. For example, Lopes
et al. [13] applied Csmith [29] to LLVM and found that peep-
hole passes were the most bug-dense component of LLVM.

Assembly semantics in CompCert CompCert provides
several carefully engineered intermediate program represen-
tations, where the lowest level is an assembly language. For
each intermediate language, CompCert formally specifies a
dynamic semantics and proves that transforming programs
from one language to another preserves meaning. These se-
mantics are engineered to balance the tension between prov-
ing correctness and supporting optimizations. Prior to our
work, CompCert did not perform optimizations on x86 as-
sembly, and thus the lowest-level language semantics were
not engineered to support transformations.

As Section 5 explains in detail, CompCert’s x86 seman-
tics models an infinitely large memory with addresses (point-
ers) represented using mathematical integers. This model
makes it impossible to prove many correct peephole opti-
mizations, that is, many optimizations which would always
preserve behavior on actual x86 hardware, because the se-
mantics assumes, conservatively, that certain bit and arith-
metic operations applied to pointers are undefined. To re-
solve this semantic mismatch, we defined a new, lower-level
semantics that models pointers as 32-bit values and proved
our semantics equivalent to the prior assembly semantics.

Our Framework An effective framework for verifying
peephole optimizations should support local reasoning: a
peephole optimization is a local program rewrite that pre-
serves the machine-state transitions of a sequence of instruc-

tions. Formal compiler verification ultimately requires show-
ing that such a local transformation preserves global pro-
gram meaning. Therefore, we have developed a framework
with a “once and for all” proof that any peephole optimiza-
tion preserving local meaning also preserves global mean-
ing.1 Section 3 discusses the proof obligations a peephole-
optimization writer must meet to use our framework. Sec-
tion 4 presents a theorem that lifts these local proofs to
global correctness guarantees.

Because peephole optimizations rely extensively on live-
ness information (whether a register value will be used be-
fore it is overwritten), our framework provides a verified
liveness analysis. A peephole optimization indicates which
registers need to be dead for the optimization to apply, al-
lowing it to change the values in temporary (dead) registers.

Finally, we provide a verified program-transformation en-
gine that takes a peephole optimization and applies it where
possible in a program.

Contributions Verifying peephole optimizations in Comp-
Cert required several technical advances, which we provide
in a new framework named Peek. These advances include:

• A new CompCert x86 assembly semantics that represents
pointers as 32-bit integers, and a proof of equivalence
with the existing, higher-level assembly semantics un-
der reasonable and implementable assumptions about the
system memory allocator.
• A liveness analysis over x86 assembly, verified for all

assembly programs adhering to the standard C calling
convention (see Section 4.3).
• A modular framework in which each correct concrete

peephole optimization is shown to preserve global pro-
gram meaning.
• A library of lemmas and tactics that allow for easy veri-

fication of additional peephole optimizations.
• A technique for parameterizing concrete peephole opti-

mizations over register names to work for any correct in-
stantiation of registers.

As detailed in the paper, our advances come with a few
caveats that we believe could be addressed in future work
without significantly modifying our overall approach. For
example, we require peephole optimizations to preserve pro-
gram length, inserting no-ops rather than shortening the pro-
gram.

To evaluate our work, we implemented and verified 28
optimizations capturing a range of idioms as well as exam-
ples from the superoptimization literature [2]. All our code
and proofs are publicly available.2

1 Our current proof makes an explicit assumption that all functions in the
program follow the standard calling convention (see Section 4.3 for details),
which could be proven in future work without altering our framework.
2 https://github.com/uwplse/peek

2. Overview
Background and Example The peephole optimizations
we consider operate over compiler-generated assembly code,
i.e., at the lowest-level language used in the compiler. These
transformations can take advantage of machine-specific in-
formation and can clean up inefficiencies introduced during
the translation to assembly.

As a simple-but-clever example, consider this rewrite for
x86 assembly3 from the literature [2]:

sub %eax, %ecx notl %eax

mov %ecx, %eax =====> add %ecx, %eax

dec %eax

We call the code on the left the find-pattern and the code
on the right the replace-pattern. This transformation cor-
responds to replacing the expression x = y - x - 1 with
x = y + ~x where x and y are twos-complement 32-bit
integers initially in registers %eax and %ecx respectively
and ~ is bitwise-negation. While it could be applied in
any intermediate representation (that has bitwise negation),
doing so misses opportunities since the pattern can arise
in generated code for operations like indexing into mem-
ory structures—code not explicit in higher-level represen-
tations. Other examples of peephole optimizations may use
assembly-language features (e.g., vector instructions) un-
available at higher levels.

To perform a peephole optimization, a compiler scans
the assembly code for the find-pattern (allowing various
permutations of registers) and replaces it with the replace-
pattern. Compilers typically have many different peephole
optimizations, with an interface for expressing new ones.
An execution engine performs the scanning-and-replacing
for any peephole optimization.

Our peephole-optimization framework for CompCert fol-
lows this typical architecture, with proofs that (1) each peep-
hole optimization is correct and (2) the full system is correct
if each peephole optimization is correct.

Local Correctness and the Role of Liveness Informally,
we reason that a peephole optimization is correct if the
find-pattern and the replace-pattern act identically on the
machine-state: for all states, applying either instruction se-
quence results in the same state.4 However, requiring pre-
cisely identical state is too strong: registers in an assembly
program are often dead, meaning they are not read before
next being written. An optimization need not preserve the
values in such registers. In our example above, the transfor-
mation does not preserve the value in %ecx, so it is valid only
in contexts where %ecx is dead.

3 For the duration of the paper, we will use GAS syntax.
4 As a technical detail, this clearly cannot hold if the program text is part of
the state, which is relevant in the presence of self-modifying code, programs
that observe the size of the binary or the exact value of the program
counter, etc. Compilers can ignore these issues because such techniques
for inspecting the binary are unavailable to well-defined source programs.

In unverified compilers, peephole optimizations can of-
ten assume certain registers are dead, using knowledge about
compiler-specific code-generation details. Examples include
knowing that certain registers may only be used for tempo-
rary values, or flag registers are never live across a branch.
Our verified system has no such luxury, so each peephole
optimization lists the set of registers that must be dead for it
to apply. Furthermore, our framework includes a verified in-
traprocedural static liveness analysis over the assembly code
to produce a sound approximation of which registers must
be dead at each program point. The execution engine uses
information from this liveness analysis to apply a peephole
optimization only when the registers it requires to be dead
are, in fact, dead.

A Lower-Level Assembly Semantics Every intermediate
language in CompCert has a dynamic semantics. The com-
piler does not execute these semantics; it only generates as-
sembly code to be run later. The semantics are instead used
to prove that each optimization or translation to a lower-level
language preserves meaning. The semantics for the highest-
(C) and lowest-level language (x86) are particularly impor-
tant because they are trusted to adequately represent the C
language definition and the x86 language definition.

As explained in Section 5, there is a semantic gap be-
tween CompCert’s definition of 32-bit x86 assembly and re-
ality. CompCert’s x86 semantics represents pointers as a pair
of a memory block and an offset, not as the 32-bit integers
used in reality. Blocks are represented by mathematical inte-
gers, and memory is assumed to be infinite.

CompCert’s x86 semantics correspondingly produces un-
defined values for bitwise (and other) operations on pointers.
With such a semantics, the example transformation above is
invalid when %eax holds a pointer. But in reality, this restric-
tion is unnecessary: the optimization is correct for any reg-
ister contents, even if the bits happen to represent a pointer.
Therefore, we wish to prove such optimizations correct with-
out concern for the type of value in the register.

To achieve this, we defined a new lower-level x86 seman-
tics in which pointer values are 32-bit integers. This allows
more peephole optimizations to be proven correct. This addi-
tional semantics makes explicit several assumptions made by
CompCert. Instead of assuming an infinite memory, mem-
ory allocation must be modeled. Memory allocation is al-
lowed to fail since only finitely many pointer values exist.
We prove that our semantics is equivalent to the existing one
on any execution where memory allocation does not fail and
the memory allocator obeys several sensible axioms (as enu-
merated in Section 5). Our new assembly semantics provide
a more realistic model of x86 in CompCert’s trusted comput-
ing base, and the equivalence proof preserves CompCert’s
existing end-to-end guarantee.

Global Correctness To maintain CompCert’s compiler-
correctness proof, we must show that applying any (lo-
cally) correct peephole-optimization preserves global pro-

gram meaning. This proof contains three orthogonal compo-
nents, each discussed in detail Section 4:

• The liveness analysis is sound: any register identified as
dead at a program point must actually be dead whenever
execution reaches that program point.
• If a peephole optimization is locally correct, then any use

of it at any place in the program would preserve program
meaning.
• The execution engine performs peephole optimizations

correctly: it performs a rewrite as specified and only at
program points where the optimization is valid.

Each of these proofs uses the new x86 assembly semantics.
A separate proof guarantees that this new semantics is equiv-
alent to the prior infinite-memory semantics if memory allo-
cation does not fail.

Verification and Assumptions. All our proofs are in Coq,
using the existing CompCert framework. Our liveness anal-
ysis assumes (but does not verify) that all code obeys the C
calling convention (see Section 4.3 for details). Our seman-
tics for memory allocation axiomatizes assumptions about
the memory allocator rather than verifying an actual mem-
ory allocator. We believe these assumptions about the calling
convention and memory allocator could be discharged inde-
pendently of our work.

3. Proving Peepholes
Peek eases the proof burden for formally verifying peephole
optimizations by identifying a set of local properties that are
practical to prove for an optimization yet sufficient to es-
tablish the global correctness of applying any optimization.
This section details the three parts of such records: Peep-
hole Data, which specifies the transformation, Local Cor-
rectness, which proves the transformation satisfies the local
correctness properties, and Side Conditions, which establish
auxiliary properties used in the global correctness proof.

3.1 Peephole Data
A concrete peephole transformation is defined by a list ` of
x86 instructions to find, and a list r of x86 instructions to
replace them with, and 3 sets of registers: U , D, and T . U
lists all registers that ` and r read, D lists all registers that
` and r update (with equal values), and T lists all registers
that ` and r may leave with different contents (i.e. scratch
registers the peephole can trash). This set is necessary for
peepholes for which the r pattern uses fewer registers than
the ` pattern, such as converting 3 move instructions to an
exchange. Thus, a register that contains an input value to the
peephole and also later contains an output value, could be
in both U and D, and any register that is written by either `
or r must be in D or T . The registers in U and D could be
computed with static analysis, but Peek currently requires

the peephole writer to specify them, which we have found
easy to do in practice.

The problem with concrete transformations is that we
would need an almost-identical transformation for every
combination of registers. Instead, we want parameterized
peephole transformations that can be instantiated with ac-
tual registers to produce concrete transformations. A param-
eterized peephole transformation is a function from register
names to a concrete peephole transformation. Verifying a pa-
rameterized peephole transformation requires proving that,
for any instantiation of register names, the resulting con-
crete peephole transformation will be correct as described
the following subsections. As described later in Section 4,
rewriting with a parameterized peephole transformation re-
quires computing a substitution to instantiate the register
name parameters in the rewrite.

3.2 Local Correctness
In Peek, a concrete peephole transformation is correct if
` and r always terminate and make equal updates to all
live locations, assuming they begin in states that agree on
all live locations. Control is implicitly preserved by this
definition, because the program counter is always live. Local
correctness establishes that ` and r make equal updates to
all registers in D and equal updates to all memory locations,
assuming that they begin in states that agree on all registers
in U . Let P be the set of registers that do not appear in
U , D, or T ; these are registers that neither ` nor r read
or write and are thus preserved by the peephole. The Peek
execution engine “ties the knot” by computing the sets of
live locations Lentry, Lexit at the entry and exit of rewritten
locations respectively and checking that both U ⊆ Lentry
and Lexit ⊆ D ∪ P . Note that because local correctness
requires equal memory updates from ` and r, we do not
compute liveness for memory locations.

Let σ c
 σ′ hold whenever a state σ executes through

code fragment c (within a larger program) to yield state σ′

and let σ1
L∼ σ2 hold when σ1 and σ2 agree (as defined in

Section 4) on all locations in L. Then local correctness can
be proved by showing (1) local simulation that holds for any
larger program context ` and r may appear in:

∀ σ` σ′` σr, σ`
U∼ σr ∧ σ`

`
 σ′` =⇒

∃ σ′r, σ′`
D∼ σ′r ∧ σr

r
 σ′r

and (2) `-normalization by providing a measure m from
machine states to natural numbers satisfying:

∀ σ` σ′`, σ`
`
 σ′` =⇒ m(σ′`) < m(σ`)

For intuition, `-normalization is simply a proof that any
execution which enters the ` pattern will not diverge within
it.

Consider proving local simulation for the example in
Section 2: σl and σr have the same initial values in %eax and

%ecx, call them a0 and c0. For σl, the final value in %eax is
c0 − a0 − 1. For σr, the final value in %eax is c0 + ~a0. As
D contains only %eax, local simulation amounts to proving
c0 − a0 − 1 = c0 + ~a0, which holds for 32-bit ints.

Because we require only a local simulation, peephole
optimizations cannot rely on any properties of the rest of
the program, including position in the program, invariants
about values in particular registers, etc. This is the essence
of what makes an optimization a peephole optimization. This
interface provides modularity by allowing the rewrite to be
carried out in many contexts. Section 4 details our proof
showing that for any context, local simulation relations are
sufficient to establish global optimization correctness.

Regarding `-normalization, we currently support the
common case where ` contains only forward jumps (or no
jumps). Peek provides a default measure (difference between
PC and end of the rewrite), and a proof that this measure im-
plies normalization. Supporting rewrites that contain back-
wards jumps would require manipulating a measure con-
struction provided by the optimization implementer.

Note that there is no explicit proof that the r pattern
normalizes. However, the local simulation relation already
accomplishes this, since if the ` pattern normalizes, then
there is some finite series of steps from the beginning to
the end of the ` pattern. The local simulation relation relates
those steps to a finite series of steps from the beginning to
the end of the r pattern. Thus the r pattern also normalizes.

3.3 Side Conditions
The global proof of correctness (Section 4) assumes rewrites
satisfy the following side conditions: the length of ` is the
length of r, 5 and that the final instruction in ` is not a label.6

Furthermore, Peek requires that ` and r do not contain any
call or return instructions, which implies that they do not
modify the global program trace by making a system call.
In practice, this condition could be relaxed but no peephole
transformation we found violated the constraint and this con-
dition eases the global correctness proof. All the above con-
ditions are decidable, and Peek includes decision procedures
or tactic support for automating their proofs.

3.4 Local Peephole Verification
As described above, the framework requires both a termi-
nation measure and a local simulation. In practice, simply
using the number of instructions remaining in a peephole
suffices for the measure of all peepholes we have verified.
Proofs of local simulation are, on the other hand, very spe-
cific to each peephole, but with some common elements.

5 This restriction could be relaxed with a pre and post pass to insert and/or
remove NOP instructions. We have not verified NOP insertion or deletion, but
we have defined the CompCert pretty printer to print NOP instructions as the
empty string, effectively implementing NOP removal.
6 This last detail arises from CompCert’s choice to make labels themselves
instructions and to model a jump to a label as transferring control to
immediately after the label.

They naturally decompose into two parts: (1) proving the
right side can step (given the steps on the left), and (2) prov-
ing the resulting values computed by the right and left are
equivalent.

To ease proving (1), we developed lemmas and custom
Ltac tactic support. Without this support, naively construct-
ing a single step on the right side can take between 60 and
100 lines of Ltac and exhausted available memory on some
optimizations as short as 4 instructions. By developing tac-
tics specifically related to correlating the resulting left and
right program states, a single tactic often suffices for each
program step, typically taking under a second and imposing
reasonable memory overhead. Furthermore, this tactic sup-
port can typically automatically prove that the right-hand-
side can step, allowing the optimization writer to focus on
(2) and show that the optimization is meaning preserving.

4. Verifying Peek
Section 3 discussed the local properties sufficient for a cor-
rect peephole transformation. This section connects these lo-
cal properties to global program execution. As noted in pre-
vious sections, liveness plays a key role in verifying Peek.
The high level approach to the main correctness result is im-
plementing a liveness analysis that computes the set of live
registers at every program point, proving that any transfor-
mation that preserves the values of these registers also pre-
serves global program meaning, and then proving that any
application of the execution engine to apply a locally correct
peephole will preserve live locations and therefore global
program meaning. We detail each of these components and
their proofs below.

4.1 Liveness
A peephole’s local correctness properties imply global cor-
rectness only when the liveness information at a rewritten
program location guarantees that all the inputs (registers
containing values used in the peephole) are live and that all
live locations at the output that are updated by the find pat-
tern are refined by the replace pattern as detailed below.

Our liveness analysis computes a function live mapping
program locations to a set containing all live registers at that
location. We prove that a program’s behavior depends only
on the values stored in registers marked as live. We say y
refines x if either x is undefined or x = y. Further, if for each
register r in L, the value contained in register r in σ2 refines
the value contained in r in σ1, we write σ1

L∼ σ2. If σ1
L∼

σ2, then for any correct liveness set L, program executions
from these states will generate equivalent traces of externally
visible events. Let σ(r) denote the value of register r in
state σ. We show that any transformation preserving liveness
also preserves program behavior by proving this simulation

relation:

∀ σ1 σ′1 σ2, (σ1
live(σ1(PC))∼ σ2 ∧ σ1 σ′1) =⇒

∃ σ′2, σ′1
live(σ′

1(PC))∼ σ′2 ∧ σ2 σ′2

4.2 Liveness Implementation
Peek’s liveness analysis is an iterative dataflow analysis. The
set of live registers is initialized to ∅ at each program point,
and an update function is iteratively applied using a standard
worklist algorithm until the liveness information reaches a
fixed point with respect to the update function. The liveness
at return instructions is fixed to callee-saved registers and the
register containing the return result. Likewise, the liveness at
function call sites is fixed to caller-saved registers.

The proof that the calculated liveness information meets
the above specification naturally decomposes into two parts.
First, we prove that if iteration of the update function halts,
then the result is a fixed point of the update function. Specif-
ically, the calculated liveness information is invariant to fu-
ture applications of our update function. Second, we prove
that liveness information that is at a fixed point with respect
to the update function is a simulation relation (as above). To
prove this, we show that our static approximation to control
flow is sound, and that our static approximation to which
registers each instruction uses and defines is sound. These
two facts compose nicely into a simulation relation.

4.3 Calling Convention
The correctness of the liveness analysis depends on five facts
that comprise the x86 calling convention that CompCert
uses. They are true for CompCert-generated code, but we
have not verified them. These are necessary for proving the
intraprocedural analysis is interprocedurally correct, as the
given CompCert semantics for call and return instructions
are defined quite liberally, and do not provide many guaran-
tees.

1. Any step that executes a call instruction steps to the
beginning of a block (i.e., the beginning of a function).

2. Any step that returns from a function steps to an instruc-
tion right after some call.

3. All non-callee-save registers are dead when executing a
call instruction. (CompCert passes all function parame-
ters on the stack.)

4. All registers except the callee-save registers and the
return-value register are dead when executing a return.

5. When returning, the location of the return value assumed
by the returning function matches the location of the
return value assumed by the caller.

4.4 Global Peephole Optimization Correctness
The liveness analysis and local peephole properties come to-
gether to form a correctness proof of global program trans-
formation. The proof of global correctness takes a local

...
... Peek

id

Figure 1. Peek Backend CompCert produces code in
ASMZ. We prove a forward simulation to establish that a
program will have equivalent behavior under ASMZ32. Peek
repeatedly applies peephole optimizations from a set of ver-
ified rewrites to the code.

peephole simulation relation and forms a global program
simulation relation with input from the liveness analysis.
We use CompCert’s approach for proving program transfor-
mations correct. In CompCert, a transformation is correct if
there is a bisimulation between the original and transformed
programs. In practice in CompCert, we prove only a forward
simulation for each transformation and use the fact that each
intermediate language’s semantics is deterministic to con-
struct a backward simulation. Therefore, given two programs
p1 and p2, we need to show that all possible behaviors of p1
are possible behaviors of p2.

A forward simulation shows that if state σl in the original
program matches some state σr in the transformed program,
and σl can take a step to σ′l, then there is some state σ′r
that σr can step to, and the resulting states σ′l and σ′r match.
This relation can be transitively composed to prove that any
executions of arbitrary length agree between the original and
transformed program.

For proving peephole rewrites correct globally, we parti-
tion program states as follows. A state σ is outside a rewrite
if the program counter points to an instruction that was not
rewritten by the transformation. A state σ is at entry if the
program counter points to an instruction that is the first in-
struction that was rewritten by the transformation. A state σ
is inside if its program counter puts it at an instruction that
was rewritten, but is not the first instruction in the rewrite,
and there is a series of steps from some other state σ0 to σ,
where σ0 is at entry, and those steps occur within the rewrit-
ten region. (See Figure 2.)

It remains to define this matching relation between σl
and σr to show that any locally correct peephole can be
applied to produce a new program that (forward) simulates
the original program. σl and σr are in the relation if any of
the following hold:

• match out: σl and σr are both at the same program loca-
tion, that program location is outside as defined above, σl
and σr contain the same values in all live registers, and
σl and σr have identical memory.

σ`1

σ`2

σ`3

σ`4

σr1

σr2

σr3

σr4

(1)

(2)

(3)

entry

inside

outside

Figure 2. Match States Cases: At the beginning of the
rewritten region (1), states match when at the same code lo-
cation. As σ` steps through the left side of the rewritten re-
gion, it repeatedly matches σr1 (2). Once σ` exits the rewrit-
ten region, it again matches at identical code locations (3).

• match entry: σl and σr are both at the same program
location, that program location is at entry as defined
above, σl and σr contain the same values in all live
registers, and identical memory.
• match in: σl is inside as defined above, σ0 and σr contain

the same values in live registers, and the same memory.

The entry and outside cases, while similar, are kept dis-
tinct to allow for the Step Cases lemma below. To apply
a peephole transformation, we also need to prove that con-
trol flow enters the rewritten region only at the beginning of
the rewrite and exits only at the end. Without this property,
very few classical peephole transformations are valid. Prov-
ing this fact is surprisingly subtle in x86, as some instruc-
tions have semantics that simply store the value of a register
into the program counter and thus could jump to arbitrary
locations.

We prove this control-flow property via two lemmas: sin-
gle entry states that any execution step that would enter the
rewritten region always steps to the first instruction, and sin-
gle exit states that any execution step that would exit the
rewritten region steps to the instruction immediately follow-
ing the rewritten region. Using these lemmas, we character-
ize the scenarios a program can be in after taking a step:

Step Cases Lemma: If σ σ′, then (1) if σ is outside,
then σ′ is outside or at entry, and (2) if σ is at entry or inside,
then σ′ is inside or outside.

This lemma then allows the simulation proof to proceed
by handling the corresponding cases. The following theorem
is the proof of global correctness.

Theorem: If σl matches σr, and σl σ′l, then either there
is some σ′r such that σr σ′r and σ′l matches σ′r, or σ′l
matches σr and a measure decreases from σl to σ′l.
Proof Sketch:

• If σl is outside, and σ′l is outside or at entry, the proof
follows from the correctness of liveness.

• If σl is at entry or inside, and σ′l is inside, the proof shows
that σ′l matches σr and the measure decreases. The proof
of the measure decreasing comes from local properties in
the verified rewrite rule.
• If σl is at entry or inside, and σ′l is outside, we first appeal

to the single exit property to show that σ′l is precisely
at the end of the rewritten region. Next, we unfold the
definition of inside, collect the series of steps from our
original σ0 to σ′l, and use that series of steps to leverage
the correctness of the rewrite.

4.5 Parameterized Rewrites
Recall parameterized rewrites work for any set of appro-
priate registers whereas concrete rewrites specify exact as-
sembly registers. We use higher-order functions to get the
expressiveness of parameterized rewrites with the verifica-
tion burden of concrete rewrites as follows: The optimization
writer actually writes a function that given an instruction se-
quence (by the optimization-execution engine) determines
if registers can be assigned to produce a verified concrete
transformation that matches the instruction sequence. If so,
the particular correct concrete transformation corresponding
to the code found in the program is produced. The proofs of
correctness of these transformations are done once and for
all, with abstract registers and constraints over them. Once a
concrete rewrite is needed, the particular proof is simply in-
stantiated with the given concrete registers and appropriate
proofs of register constraints. Note the function that attempts
to produce the concrete transformation need not be verified
itself — if it wrongly misses an opportunity to produce a
concrete transformation no unsoundness results, and the type
system guarantees that the optimization writer cannot write
a matcher that ever successfully produces a concrete trans-
formation that is not correct. In practice, writing a parame-
terized transformation (which is what peephole transforma-
tions in conventional compilers actually are) is hardly more
difficult than writing a concrete transformation: one sim-
ply pattern-matches on an instruction sequence and checks
register-name constraints. We include tactic support to fur-
ther minimize the effort.

5. Semantics Over Bits
In CompCert, many correct peephole optimizations are not
provable because arithmetic operations are undefined (or
partially defined) over pointer values. Peephole optimiza-
tions must be correct regardless of the type of value a reg-
ister contains at runtime. To support peepholes, we add a
new CompCert assembly semantics where pointers are rep-
resented as concrete 32-bit integers so more operations will
be defined over pointers.

This section motivates the need for this change, defines
the new language, axiomatizes a correct memory allocator
that can fail due to memory exhaustion, and describes the
proof that our semantics is equivalent to the existing se-

mantics on any execution where memory allocation always
succeeds. We refer to the “existing” semantics with respect
to infinite memory as ASMZ and our “new” semantics as
ASMZ32 since the change is to give pointers a bit vector rep-
resentation.

5.1 Motivation
In CompCert C, the (non-aggregate) values are floats of
various sizes, integers of various sizes, pointers, or the un-
defined value. The dynamic semantics of every intermedi-
ate language in CompCert is defined to compute over these
same values, with each value containing a (runtime) type tag.
These type tags are included even in ASMZ (and retained in
ASMZ32) even though an actual x86 implementation does
not have them: on actual hardware, there are only bit vectors
without the corresponding type tags. Thus ASMZ32 guaran-
tees that, at runtime, no values with tag Vptr are present in
registers or memory, all memory addresses are represented
using Vint.

This semantic gap then propagates to the semantics of in-
structions. With CompCert’s type tags, the instruction def-
inition often branches on the tag of an argument’s value
with some branches producing the special “undefined” value
Vundef. An example of such a semantics is for the integer-
subtraction instruction:

Definition sub (v1 v2: val): val :=

match v1, v2 with

| Vint n1, Vint n2 =>

Vint(Int.sub n1 n2)

| Vptr b1 ofs1, Vint n2 =>

Vptr b1 (Int.sub ofs1 n2)

| Vptr b1 ofs1, Vptr b2 ofs2 =>

if eq_block b1 b2

then Vint(Int.sub ofs1 ofs2)

else Vundef

| _, _ => Vundef end.

In actual x86, this subtraction instruction always per-
forms subtraction on bit vectors. In the definition above, sev-
eral cases instead produce Vundef, such as if an operand
is a float or if the two operands are pointers into different
blocks. The ASMZ semantics is sufficient because (1) legal
C source programs will not depend on undefined-values7 and
(2) when undefined-values are not produced, the semantics
aligns with actual x86 just with the addition of type tags and
with a higher-level representation of pointers using a block
and an offset (see Section 5.2).

Now consider the peephole optimization first shown in
Section 2 that uses bitwise negation to replace subtraction.
The semantics for taking the bitwise-negation of a pointer is
Vundef since there is no reasonable way to bit-negate a pair
of a block (represented as a Z) and an offset (represented
as a Z32), nor is the operation defined on C pointers. But

7 The subtraction example in particular matches C’s semantics: Subtraction
of two pointers returns a defined value only if the two pointers are into the
same block of memory.

now under this semantics, the peephole optimization is not
meaning-preserving due to program states where an operand
may be a pointer. A peephole optimization must be correct
for all (types of) operands since by this stage in the compiler,
static type information has been erased. In this case, if type
information had not been erased, the information available in
CompCert still cannot distinguish between pointers and in-
tegers. Hence the proof of correctness for a common integer
optimization, for example, must include a case for registers
that contain floating point values, and registers with unde-
fined values, and so on.

After pursuing several design alternatives (not discussed
due to space constraints), we concluded that the best small-
but-sufficient design change was to introduce a lower-level
semantics that still has type tags but also gives pointers a bit
vector representation. Two computations over pointer values
are equivalent as long as they produce the same bit vector for
every input. As described in the remainder of this section, we
axiomatize how a memory allocator must behave in terms of
the bit vectors it returns as pointers in order for ASMZ32
to be equivalent to ASMZ. We need to take particular care
not to introduce a false axiom because there are finitely
many 32-bit bit vectors whereas ASMZ’s semantics assumes
an infinite memory, so any claim of a bijection between
the two representations of pointers is logically inconsistent.
Moreover, our finite range of pointer values necessitates
allowing for memory exhaustion (i.e., failed allocation), a
possibility not previously considered in CompCert.

5.2 Converting Between Memory Addresses and
Pointer Values

In ASMZ and ASMZ32, a memory address is a block ×
offset pair, where a block is a positive integer, unbounded
in size, and an offset is a 32-bit unsigned integer. In ASMZ,
a pointer value is a memory address, but in ASMZ32 a
pointer value is a 32-bit integer. The two semantics use the
same memory model with an infinite memory of blocks, thus
simplifying the translation from ASMZ to ASMZ32.

Performing memory operations in ASMZ32 requires con-
version between 32-bit integers and memory addresses, i.e.
a memory allocator. We use pinj (“pointer inject”) to map
from a memory address to a pointer value and psur (“pointer
surject”) to map from a pointer value to a memory address.
As discussed below, these functions are defined as opaque
axioms subject to constraints. They have these signatures:

pinj : AS → block → int32 → option int32

psur : AS → int32 → option (block ∗ int32)

The option in pinj’s return type models memory exhaustion
and is crucial to avoid axiomatizing false by claiming that
an infinite set can map injectively to a finite set. psur has a
return type of option as well, which lets us axiomatize that
any successful psur implies a successful pinj. To model
these mappings changing over the execution of the program

(as pointer locations are reused via malloc and free), we
add an additional argument to pinj and psur, representing
the current allocator state (AS). This allocator state is kept
opaque, and is manipulated by malloc and free opaque
functions to produce modified allocator state.

We axiomatize the propagation of the opaque alloca-
tor state. A single object of this type represents an initial
(empty) allocator state, init : AS. We also assume the
initialized allocator state corresponds to the initial mem-
ory when main begins to execute. We axiomatize func-
tions representing allocate and free actions which transform
the allocator state. alloc : AS → Z → Z → block

→ AS and free : AS → Z → Z → block → AS. In
CompCert, allocate and free operate on ranges of offsets
within blocks. In order to support this, alloc and free each
take two Z arguments, which represent the range within the
block. Likewise, we axiomatize as ec and as ec’, which
record external calls in the allocator state (corresponding to
CompCert’s external call and external call’ respec-
tively).

Further, we define what it means for a memory and an
allocator state to match. Specifically, the empty memory
and init match. A new memory produced from an allocate
action matches a new AS produced from an alloc action
(with the same arguments and results), provided the previous
memory and AS matched. A new memory produced from a
free action matches a new AS produced from a free action
(with the same arguments), provided the previous memory
and AS matched. A new memory produced from some action
that does not allocate or free (e.g., store) matches any AS the
previous memory matched. Again, matching allocator state
and memory is similarly defined over external calls. Finally,
we say that a particular AS extends another AS if one was
produced in some number of steps from the other.

To reason about these opaque functions, which map mem-
ory addresses to ASMZ32 pointer values, we use a set of ax-
ioms about pinj and psur Figure 3.

The semantics for memory-load and -store instructions
uses pinj and psur to manipulate registers holding bit
vectors that describe memory addresses. Additionally, in
ASMZ, a new memory allocation generates a pointer to a
new block of memory in a simple way: a global counter of
blocks is updated, and the new fresh block is used to generate
pointers into the memory. In ASMZ32, the same approach is
used, but the result pointers are injected to bits using pinj.

In ASMZ, arithmetic operations produce fewer undefined
results for 32-bit integers than for pointers. That is, if an
operation does not produce Vundef for pointer operands,
then it does not produce Vundef for int operands. Therefore,
ASMZ32 is strictly more defined than ASMZ, as everywhere
ASMZ will not produce Vundef, ASMZ32 will not produce
Vundef. However, ASMZ32 will not produce Vundef in
additional cases such as bitwise-negation of a pointer value,
which is the entire purpose of ASMZ32.

1. pinj always remembers a mapping:
∀ as, ∀ as′, ∀ b, ∀ o, ∀ bits,
pinj as b o = Some bits→ extends as as′→
pinj as′ b o = Some bits.

2. pinj allows for pointer arithmetic:
∀ as, ∀ b, ∀ o, ∀ bits, pinj as b o = Some bits→
∀x, pinj as b (o+ x) = Some (bits+ x).

3. pinj is injective within the same block:
∀ as, ∀ b, ∀ o1, ∀ o2, ∀ bits,
pinj as b o1 = Some bits→ pinj as b o2 = Some bits→
o1 = o2.

4. Null is always invalid:
∀ as, ∀m, match as m→
∀ b, ∀ o, pinj as b o = Some NULL→
validm b o = false ∧ validm b (o− 1) = false.

5. psur is equivalent to pinj and weakly valid:
∀ as, ∀m, match as m→ ∀ b, ∀ o, ∀ bits,
psur as bits = Some (b,o)←→
(pinj as b o = Some bits ∧ weakvalidm b o = true).

6. pinj supports pointer comparison:
∀ as, ∀ b, ∀ o1, ∀ o2, ∀ bits1, ∀ bits2,
pinj as b o1 = Some bits1→ weakvalidm b o1 = true→
pinj as b o2 = Some bits2→ weakvalidm b o2 = true→
(o1 < o2←→ bits1 < bits2).

Figure 3. All of the axioms constraining pinj and psur,
except those related to external calls, which are used to
verify the forward simulation from ASMZ to ASMZ32.

5.3 Axiomatizing Memory Allocation
Conceptually, the system memory allocator (e.g., malloc,
alloca, or function stack frames) is an instantiation of pinj
and psur: Allocating a new memory block amounts to as-
signing it a pointer-value (its position in the virtual address
space). We do not define our semantics in terms of an actual
instantiation of pinj and psur, but instead we define our re-
quired specification of the allocator. (And since this is only
the semantic definition, we do not actually need one. Like in
CompCert prior to our work, the compiled binary is linked
against the ordinary standard (unverified) library for C.)

Additionally, ASMZ32 includes the axiom that any exter-
nal call behavior is duplicated when all pointer values in the
registers and memory have been converted via pinj to bits,
and that the allocator state produced by these two calls is
equal.

These axioms comprise the specification of a memory al-
locator, as shown in Figure 3. Any allocator must satisfy all
of the properties above, and any allocator satisfying those
properties is a valid system allocator for running assembly
programs. For example, since pointer arithmetic exists at the
assembly level, the allocator must preserve the behavior of
that arithmetic (2); the allocator must not use the NULL ad-
dress for anything, as programs rely on that address being in-
valid (4); and pinj and psur must be inverses of each other,

as it is essential for the semantics to correctly pack/unpack
pointer values (5).

Memory deallocation (i.e, free) deserves brief discus-
sion. Because CompCert’s correctness guarantee is only for
legal C programs and programs executing dangling-pointer
dereferences are illegal, their behavior is not directly rele-
vant. In ASMZ and ASMZ32, free marks a block of memory
as unusable and subsequent access produces Vundef. More
interesting, and unconsidered in ASMZ due to infinite mem-
ory, is needing to reuse pointer values. Our explicit handling
of allocator state has allowed us to build, to our knowledge,
the first formally verified system with a specification of a
memory allocator which allows for memory reuse.

5.4 Equivalence of ASMZ and ASMZ32

ASMZ32 is a new semantics over the same syntax for which
ASMZ is defined. To maintain CompCert’s correctness guar-
antee, a bisimulation proof between ASMZ and ASMZ32
is required. We have constructed this proof, assuming that
pointers produced in the program by ASMZ are injectable to
bits: i.e., do not return None when passed to pinj. If None
is produced, this corresponds to a memory-allocation fail-
ure, which is allowed in C but not modeled by ASMZ or
any of CompCert’s higher-level languages. More formally,
we assume that any pointer to the first byte of all allocated
blocks in any program state reachable (in some finite num-
ber of steps) from the initial state does not return None when
passed to pinj.

We only guarantee forward simulation in cases where
memory allocation doesn’t fail: a guarantee morally equiv-
alent to the existing CompCert guarantee. Our approach
to injecting pointers does not, in essence, add axioms to
CompCert so much as it makes explicit certain assump-
tions which existed implicitly in the semantic gap between
CompCert’s x86 backend semantics, and the actual behavior
of an x86 chip.

In order to argue forward simulation from ASMZ to
ASMZ32, the definition of matching register sets is straight-
forward: If a register contains a value other than a pointer or
undefined in ASMZ, it contains that same value in ASMZ32.
If a register contained a pointer in ASMZ, it contains the
corresponding integer in ASMZ32. If a register contained the
undefined value in ASMZ, it could contain any value (other
than a pointer) in ASMZ32.

6. Evaluation
Peek is implemented and verified as an extension of CompCert
version 2.4. We discuss our implementation and evaluation
of it in these terms:

• The complexity of Peek’s implementation, proof, and
trusted computing base
• The complexity of proving particular peephole optimiza-

tions correct, including the variety of optimizations we

Spec Proof Total
Peek Total 6,000 10,000 16,000
Liveness 1,300 2,300 3,600
Peephole Exec 3,300 6,600 9,900
Libraries 1,100 900 2,000
Parameterization 40 163 203

ASMZ32 3,300 5,500 8,800
Peephole Lib 2,000 3,100 5,100
Total 11,300 18,600 29,900

Figure 4. Approx. lines of code according to coqwc tool.

have proven such as several challenging ones from the
recent superoptimization literature
• Compiling CompCert benchmark programs with our

peephole optimizations: how many programs have peep-
hole optimizations occur and a preliminary investigation
of performance impact

6.1 Implementing Peek
The peephole framework that we added to CompCert com-
prises approximately 30,000 lines of Coq code and proof
lines. Its main components are the lower level x86 seman-
tics, liveness analysis, and the peephole execution engine
and their respective proofs of correctness. We also provide
a library to make proving peephole optimizations correct
easier. The implementation sizes of these components are
shown in Figure 4.

The trusted computing base (TCB) for Peek is similar to
the TCB for CompCert. Just like CompCert, we trust the Coq
proof checker, the Ocaml compiler and runtime, and that the
C front-end models the semantics of C. Unlike CompCert,
we trust the ASMZ32 backend instead of the ASMZ backend
to model x86 execution faithfully, but as explained earlier,
we proved ASMZ32 and ASMZ equivalent. Furthermore,
ASMZ32 is closer to real program execution than ASMZ. We
further trust that certain axioms are true, in particular that all
generated code obeys the standard calling convention. Note
that adding a peephole optimization incurs no increase in our
trusted computing base.

6.2 Peephole Success
CompCert ships with a collection of small benchmarks,
some of which are implementations of various hash func-
tions in C. Some of these hash functions frequently left-
rotate 64 bit values. For some of the left-rotate operations,
CompCert currently generates 3 instructions including a left
shift, a right shift, and an or. However, a single extended
shift instruction is bitwise equivalent to these three. We im-
plemented and verified two peepholes of this style, but with
different orders of shifts. With these peephole transforma-
tions enabled, the siphash24 benchmark in the CompCert

benchmark suite sped up by 4%, and the sha3 benchmark
saw a speedup of almost 1%.

6.3 Peephole Variety
We proved a total of 28 peephole optimizations correct,
using a range of different assembly computations. Some
perform arithmetic operations (e.g., shift instead of mul-
tiply), others remove unnecessary jumps, eliminate redun-
dant loads, or improve instruction-level parallelism. The ap-
pendix contains all the peephole transformations we have
verified. Our purpose is to exercise a variety of assembly in-
structions to show that our framework is expressive enough
to reason about semantic equivalence for useful transforma-
tions. Moreover, proof burden, while clearly non-trivial, is
minor compared to proving the framework correct. The av-
erage proof size for a peephole optimization was 72 lines.
Our approach for parameterization over registers does not
increase this proof size.

Six of our verified peephole optimizations are all six of
the assembly transformations presented as discovered by the
stochastic superoptimizer in Bansal et al.’s recent work [2].8

We took these rewrites as “challenge problems” that perform
surprising transformations where equivalence is not obvious.
Note the contribution of Bansal et al. is a system for automat-
ically discovering them; we verified their correctness.

Qualitatively, the limiting factor in implementing more
peephole optimizations, particularly those that would im-
prove performance, is that the current ASMZ and ASMZ32
semantics covers only the subset of x86 behavior needed by
the existing code generator. It is conservative in two respects:
(1) not including unused instructions or addressing modes
and (2) often leaving values in flag registers undefined even
when the instruction behavior for x86 specifies them. This
conservatism is a common and wise engineering decision
in formal verification — specify only the subset the system
needs — but it directly limits the expressiveness of peephole
optimizations we can verify. To date, we have been loathe
to make additions to ASMZ (and correspondingly ASMZ32),
but future work can relax this approach with appropriate (un-
verifiable) care that our additions model x86 properly.

6.4 Benchmark Results
While our focus has been on verification and expressiveness,
we also compared the output of CompCert with and with-
out our optimizations on a standard set of small benchmarks
shipped with CompCert. On 15 of the 23 benchmarks, none
of our optimizations apply, so identical assembly is gener-
ated. For the remaining, see Figure 5 for the number of opti-
mizations that occur (static count), and the percent speedup.

Performance improvements so far are less encouraging.
We see improvements of 4.0% and 0.7% on benchmarks

8 In one case, we changed the optimizations to use a test instruction
rather than subtraction because CompCert’s semantics for subtraction is
conservative with respect to how flags are set.

Benchmark # of Rewrites Speedup
binarytrees 1 -
chomp 6 -
fannkuch 3 -
fftw 1 -
knucleotide 10 -
sha1 4 -
sha3 23 0.7%
siphash24 33 4.0%

Figure 5. Performance results of Peek.

siphash24 and sha3 respectively. For other benchmarks,
run-time does not change to a statistically significant extent.

These benchmarks were run on an intel i7-4790K at
4.00GHz with 16 gigabytes of RAM, running Ubuntu 15.04.

As discussed above, the limited expressiveness of ASMZ
holds back additional improvements. We have identified
peephole optimizations that would speed up additional
benchmarks, but verifying them would require extending
ASMZ to include new instructions and addressing modes.

6.5 Verified Benchmarks
One of the big advantages of low marginal cost verified op-
timization, is that it can be applied to speed up already ver-
ified code while retaining the guarantees already provided
by this verified code. We took the C code that the VST [1]
project verified was a correct implementation of SHA-256,
and used it as an additional benchmark. We have developed
verified peepholes which fire on this benchmark, and man-
aged a 3.9% speedup (arithmetic average over 9 trials).

7. Related Work
Peek builds on previous research in peephole optimization,
extensible compilers, and formal compiler verification.

Peephole Optimizers. Peephole optimizations are well-
studied in the compiler literature [15], particularly in the
context of superoptimization [2, 4, 14, 19, 22, 23]. How-
ever, to our knowledge, Peek is the first peephole optimiza-
tion framework within a fully formally verified compiler. In
particular, Peek shows how to extend CompCert’s memory
model to support verifying common peephole optimizations
and provides a framework to formally prove peepholes with
reasonable proof overhead.

Extensible Compilers. Frameworks like Gospel [28], Broad-
way [6], Cobalt [10], Rhodium [11], and PEC [8] all en-
able the programmer to express optimizations in a domain-
specific language (DSL). Allowing programmers to develop
optimizations in a DSL eases the effort to write an optimiza-
tion and makes it easier for the framework to analyze and run
the optimization. Of these frameworks, Cobalt, Rhodium,
and PEC all exploit the restricted language of the DSL to au-

tomatically prove the correctness of optimizations. In these
systems correctness is checked fully automatically using a
solver like Z3, but both the reduction from the optimization
correctness problem to Z3 queries and the execution engine
are trusted to be correct without proof.

Verified Compilers. There is a long history on compiler
verification, from early projects like Piton verified in
ACL2 [16] to more recent work on project’s like Chli-
pala’s Lambda Tamer [5], Leroy’s CompCert [12], and Com-
pCertTSO [27]. These project all develop techniques to pro-
vide machine-checkable proofs of the compiler’s correct-
ness. Formalizing assembly languages represents some of
the most relevant work from this area. Sewell et. al.’s work
on formalizing x86 semantics [18] and Morrisett et al.’s x86
semantics for the NaCl SFI checker [17] serve as examples
of realistic x86 formalizations. However, none of these sys-
tems provide support for extensible optimization passes; in
particular, they do not support proving and adding peephole
optimizations in the context of a realistic C compiler like
CompCert.

The XCert tool was designed for automatically formally
verifying optimizations checked by an SMT-based optimiza-
tion proof tool. Unlike Peek, XCert worked in the compiler
middle-end (RTL) which greatly eased implementation, rea-
soning, and verification of XCert. By operating at the RTL
level, XCert can simply “link in” new code to avoid inval-
idating dataflow facts about other locations in the program.
Peek has no such luxury at the assembly level where code is
represented as a linear sequence of instructions in memory.
More importantly, XCert is not fully formally verified. As a
solver-aided tool, XCert has a much larger TCB than Peek
because XCert assumes the correctness of an SMT solver
like Z3. Thus XCert’s TCB is bigger because it includes an
SMT solver and XCert cannot verify assembly level transfor-
mations. Peek’s primary goal is to make it easy to add new
peephole optimizations to CompCert without increasing the
compiler’s trusted computing base. We believe that Peek’s
general approach could be applied in other verified compiler
contexts without major changes.

Similar to CompCert, the Vellvm framework [30, 31]
strives to provide a highly reliable suite of verified compi-
lation tools. Alive [13] is a tool for verifying peephole op-
timizations in LLVM. Using Alive, a peephole writer can
express and automatically prove their optimizations correct
and extract the optimization to efficient C++ code which
runs in the LLVM framework. The authors applied Alive to
identify several bugs in LLVM’s existing peephole optimiza-
tions. Unlike Alive, Peek requires peephole writers to man-
ually verify their optimizations (though Peek provides ex-
tensive tactic support to make the proof burden reasonable).
Peek is also proven correct in Coq and does not include the
correctness of any constraint solvers in its TCB.

Infinite to Finite Memory Model Translation. We are not
the first to formalize the translation of pointers from high-

level infinite memory models to low-level finite memory
models. Kang et. al. built and verified what they call a quasi-
concrete memory model, which addresses the gap between
infinite and finite memory models [7]. Their model injects
high level pointers to low level bits on demand, as those
pointers are cast to integers. If a pointer is never cast, it is
never injected. Further, they give semantics to their injec-
tion (or as they call it, concretization), whereas we leave the
specification for the allocator opaque. Recent work to de-
velop a concrete memory allocator for CompCert [3] verifies
translations against a simple, conservative memory allocator
which lacks the ability to reuse memory. Our memory allo-
cator interface allows for memory allocators that can reuse
previously freed memory. The CompCertTSO [27] project
built finite memory into every level of CompCert, dealing
with many similar issues to us, but never explicitly translat-
ing from infinite to finite memory. This translation required
our novel memory-allocator axiomatization and an equiva-
lence theorem up to the first allocation failure.

8. Conclusion
We presented Peek, a framework for expressing meaning-
preserving x86 program transformations in the CompCert
verified compiler. To do so required (1) a new lower-level
semantics in which pointers are 32 bits, (2) an axiomatiza-
tion of dynamic memory management for proving the new
semantics equivalent to the previous one under reasonable
assumptions, (3) a verified assembly-level liveness analy-
sis, assuming the standard calling convention, (4) a verified
program-transformation engine for applying rewrites, (5) an
interface for expressing peephole optimizations and prov-
ing them locally correct, and (6) a proof that locally cor-
rect rewrites are globally correct. Beyond all the necessary
proofs, we evaluated our work by implementing and proving
correct a variety of peephole optimizations.

Future work includes extending CompCert’s x86 seman-
tics to include more instructions and addressing modes that
enable optimizations, and to investigate other assembly-level
transformations such as software-fault isolation.

References
[1] A. Appel. Verification of a cryptographic primitive: SHA-256.

ACM Transactions on Programming Languages and Systems,
37(2):7:1–7:31, Apr. 2015.

[2] S. Bansal and A. Aiken. Automatic generation of peephole su-
peroptimizers. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 394–403, Oct. 2006.

[3] F. Besson, S. Blazy, and P. Wilke. A concrete memory model
for CompCert. In Proceedings of the 6th International Con-
ference on Interactive Theorem Proving, pages 67–83, July
2015.

[4] S. Buchwald. Optgen: A generator for local optimizations.
In Proceedings of the 24th International Conference on Com-

piler Construction, pages 171–189, Apr. 2015.

[5] A. Chlipala. A verified compiler for an impure functional
language. In Proceedings of the 37th ACM Symposium on
Principles of Programming Languages, pages 93–106, Jan.
2011.

[6] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting
the domain-specific semantics of software libraries. Proceed-
ings of the IEEE, 93(2):342–357, Feb. 2005.

[7] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic,
and V. Vafeiadis. A formal C memory model supporting
integer-pointer casts. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, pages 326–335, June 2015.

[8] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations
correct using parameterized program equivalence. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2009.

[9] V. Le, M. Afshari, and Z. Su. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, pages 216–226, June 2014.

[10] S. Lerner, T. Millstein, and C. Chambers. Cobalt: A language
for writing provably-sound compiler optimizations. Elec-
tronic Notes in Theoretical Compututer Science, 132:5–17,
2005.

[11] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated
soundness proofs for dataflow analyses and transformations
via local rules. In Proceedings of the 32nd ACM Symposium
on Principles of Programming Languages, pages 364–377,
Jan. 2005.

[12] X. Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, July 2009.

[13] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr.
Provably correct peephole optimizations with Alive. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 22–32,
June 2015.

[14] H. Massalin. Superoptimizer: A look at the smallest program.
In Proceedings of the 2nd International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 122–126, Oct. 1987.

[15] W. M. McKeeman. Peephole optimization. Commun. ACM, 8
(7):443–444, July 1965.

[16] J. S. Moore. A mechanically verified language implementa-
tion. J. Autom. Reasoning, 5(4):461–492, 1989.

[17] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
Rocksalt: Better, faster, stronger SFI for the x86. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 395–404, June
2012.

[18] S. Owens, S. Sarkar, and P. Sewell. A better x86 mem-
ory model: X86-TSO. In Proceedings of the 22nd Interna-
tional Conference on Theorem Proving in Higher Order Log-
ics, pages 391–407, Aug. 2009.

[19] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins,
and R. Bodik. Chlorophyll: Synthesis-aided compiler for low-
power spatial architectures. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 396–407, June 2014.

[20] S. Rideau and X. Leroy. Validating register allocation and
spilling. In Proceedings of the 19th International Conference
on Compiler Construction, pages 224–243, Apr. 2010.

[21] V. Robert and X. Leroy. A formally verified alias analysis. In
Proceedings of the 2nd International Conference on Certified
Programs and Proofs, pages 11–26, Dec. 2012.

[22] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-
timization. In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 305–316, Mar. 2013.

[23] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimiza-
tion of floating-point programs with tunable precision. In
Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 53–
64, June 2014.

[24] Z. Tatlock and S. Lerner. Bringing extensibility to verified
compilers. In Proceedings of the 31st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 111–121, June 2010.

[25] J.-B. Tristan and X. Leroy. Verified validation of lazy code
motion. In Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 316–326, June 2009.

[26] J.-B. Tristan and X. Leroy. A simple, verified validator for
software pipelining. In Proceedings of the 37th ACM Sympo-
sium on Principles of Programming Languages, pages 83–92,
Jan. 2011.

[27] J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-
memory concurrency. J. ACM, 60(3), June 2013.

[28] D. L. Whitfield and M. L. Soffa. An approach for exploring
code improving transformations. ACM Transactions on Pro-
gramming Languages and Systems, 19(6):1053–1084, Nov.
1997.

[29] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 283–294, June 2011.

[30] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formalizing the LLVM intermediate representation for ver-
ified program transformations. In Proceedings of the 39th
ACM Symposium on Principles of Programming Languages,
pages 427–440, Jan. 2012.

[31] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formal verification of SSA-based optimizations for LLVM.
In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
175–186, June 2013.

A. Peephole Optimizations
Concrete register names are used for clarity, whereas ac-
tual verified transformations are parameterized, except in the
case of instructions that require specific registers (e.g. divi-
sion). Trailing nop instructions are frequently left off. The
first six peepholes are from Bansal et al.’s Superoptimiza-
tion paper [2].

1) sub %eax, %ecx notl %eax

mov %ecx, %eax ==> add %ecx, %eax

dec %eax

2) test %ecx, %ecx test %ecx, %ecx

je .L0 ==> cmovene %edx %ebx

mov %edx, %ebx

.L0

3) mov %eax, %ecx xchg %eax, %edx

mov %edx, %eax ==>

mov %ecx, %edx

4) setg %al mov $0, %eax

movzbl %al, %eax ==> cmovg %eax, %esi

dec %eax

and %eax, %esi

5) mov $8, %eax mov $7, %eax

sub %ecx, %eax ==> sub %ecx, %eax

dec %eax

6) mov %eax, -20(%ebp) mov %eax, -20(%ebp)

mov -20(%ebp), %ecx ==> mov %eax, %ecx

7) add $1, %eax ==> inc %eax

8) add $-1, %eax ==> dec %eax

9) mov $2, %ecx ==> shr $1, %eax

div %ecx

10) shr $12, %ebx

shld $20, %ecx, %edx

sal $20, %eax

or %ebx, %eax

==> shld $20, %ecx, %edx

shld $20, %ebx, %eax

11) sal $20, %eax ==> shld $20, %ebx, %eax

shr $12, %ebx

or %ebx, %eax

12) inc %eax ==> nop

dec %eax

13) inc %eax ==> inc %eax

inc %eax

dec %eax

14) jmp .L0 ==> nop

.L0

15) lea (%eax,%ebx), %eax ==> add %ebx, %eax

16) mov $0, %eax ==> xor %eax, %eax

17) mov %eax, %eax ==> nop

mov %ebx, %ebx

18) imul $2, %eax ==> sal $1 %eax

19) imul $4, %eax ==> sal $2 %eax

20) imul $8, %eax ==> sal $3 %eax

21) not %eax ==> sub %ebx, %eax

add %ebx, %eax not %eax

22) mov %eax, %ebx ==> mov %ecx, %ebx

mov %ecx, %ebx

23) sub $1, %eax ==> dec %eax

24) sub $-1, %eax ==> inc %eax

25) mov %eax, %ebx test %eax, %eax

lea -1(%ebx), %eax ==> lea -1(%ebx), %eax

test %ebx, %ebx

26) xor %eax, %eax ==> nop

mov %eax, 24(%esp) mov $0, 24(%esp)

27) lea (%eax,%ebx), %ebx ==> add %eax, %ebx

28) mov %eax, 56(%esp)

mov 56(%esp), %edx

and $15, %edx

mov 0(%ecx,%edx,4), %eax

mov %eax, 56(%esp)

==> and $15, %eax

mov 0(%ecx,%eax,4), %eax

nop

