
Planning for Change in a Formal Verification
of the Raft Consensus Protocol

Doug Woos James R. Wilcox Steve Anton
Zachary Tatlock Michael D. Ernst Thomas Anderson

University of Washington, USA
{dwoos, jrw12, santon, ztatlock, mernst, tom}@cs.washington.edu

Abstract
We present the first formal verification of state machine safety for the
Raft consensus protocol, a critical component of many distributed
systems. We connected our proof to previous work to establish an
end-to-end guarantee that our implementation provides linearizable
state machine replication. This proof required iteratively discovering
and proving 90 system invariants. Our verified implementation is
extracted to OCaml and runs on real networks.

The primary challenge we faced during the verification process
was proof maintenance, since proving one invariant often required
strengthening and updating other parts of our proof. To address this
challenge, we propose a methodology of planning for change during
verification. Our methodology adapts classical information hiding
techniques to the context of proof assistants, factors out common
invariant-strengthening patterns into custom induction principles,
proves higher-order lemmas that show any property proved about
a particular component implies analogous properties about related
components, and makes proofs robust to change using structural
tactics. We also discuss how our methodology may be applied to
systems verification more broadly.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Formal verification, distributed systems, proof assis-
tants, Coq, Verdi, Raft

1. Introduction
Distributed systems play a critical role in modern computing infras-
tructure and therefore must be reliable. However, despite billions
of dollars invested in extensive testing, major distributed systems
still regularly fail in practice. Indeed, on a single day in the summer
of 2015, the New York Stock Exchange halted trading, the Wall
Street Journal web page went down, and United Airlines was forced
to ground all flights, all due to errors in distributed systems [28].
These errors arise even though the developers of these systems are
typically highly trained experts with advanced degrees and decades

of experience. Without the necessary tools to ensure the correctness
of their systems, there is little hope of eliminating errors.

In previous work, we began to address this challenge by building
Verdi [39], a framework for implementing and formally verifying
distributed systems in the Coq proof assistant [9]. In this paper we
describe our primary result to date using Verdi: the first formally veri-
fied implementation of the Raft [32] distributed consensus protocol.1

The original Verdi paper discusses an implementation of Raft as a
verified system transformer; Raft’s correctness, the classic lineariz-
ability property, is expressed as correctness of a transformation from
an arbitrary state machine to a fault tolerant system [39]. However,
our previous proofs were focused only on phrasing linearizability
as a VST correctness property; the proofs consisted of about 5000
lines and assumed several nontrivial invariants of the Raft protocol.
This paper discusses the verification of Raft as a whole, including all
the invariants from the original Raft paper [32]. These new proofs
consist of about 45000 additional lines. Combining this with our
previous proofs yields a complete proof that our Raft implementa-
tion is linearizable. Our effort yielded a verified implementation as
well as insights into managing the verification process.

Raft ensures that a cluster of machines presents a consistent view
of a state machine to the outside world, even in the presence of
machine failures and unreliable message delivery. Broadly speaking,
Raft provides similar functionality to the Paxos and Viewstamped
Replication protocols [21, 29]. In practice, clusters using such al-
gorithms are often used to store metadata, such as the map from
file names to servers in a distributed file system, the locations of
components in a service-oriented architecture, or distributed locks
in a work queue. Raft is used in this capacity by companies such as
CoreOS [31], Facebook [31], and Google [10].

Despite decades of research, distributed consensus protocols
remain notoriously difficult to implement [5, 18, 22, 23, 26, 30, 32,
38]. Many of the challenges are inherent to the domain: nodes of
an asynchronous distributed system are generally never in global
agreement, and these systems are designed to tolerate many types
of fault including node crashes and packet drops, duplication, and
reordering. Together, these factors make verification challenging
because core system invariants tend to be interdependent. For exam-
ple, electing a leader is conceptually orthogonal to executing state
machine commands, but in order to provide a consistent view, the
leader election process must take the state machine into account.
Thus proving a property about the state machine typically requires
proving that leader election correctly preserves the property. This
entanglement causes a change in one invariant to require extensive
updates to the invariants and proofs for other components. To suc-
cessfully build a verified implementation of Raft, we developed a

1 Our implementation and proofs are available at https://github.com/
uwplse/verdi/tree/cpp2015.

https://github.com/uwplse/verdi/tree/cpp2015
https://github.com/uwplse/verdi/tree/cpp2015

methodology to support the kinds of changes that frequently arise
during large system verification efforts.

One might imagine that the formal verification process proceeds
by first writing a detailed pen-and-paper proof and then simply trans-
lating the proof to Coq to ensure the absence of any small mistakes.
However, the reality is that paper proofs are inevitably incomplete,
and seemingly small omissions from the paper proof can require
large changes to fix, e.g., stating and proving new inductive invari-
ants. Indeed, this is precisely the reason that machine-checked proofs
are useful: people make errors in constructing and checking proofs.

More realistically, formal verification is an iterative process:

1. write a pen-and-paper proof which serves as a high-level veri-
fication plan;

2. translate each theorem and proof from the plan to Coq;

3. eventually get stuck, discovering that the high-level plan fails to
account for some important detail;

4. update the high-level plan to address the new challenge, and
change system definitions and theorem statements accordingly;

5. go back to step (2), and rework all theorems whose proofs are
no longer valid.

In practice, phases (3), (4), and (5) dominate the verification effort.
To manage this process for Raft, we developed a methodology

consisting of the following recommendations to reduce rework:

• Extend classical information hiding techniques with interface
lemmas that support reasoning about hidden definitions (Sec-
tion 4). This allows changing implementation details without
perturbing the rest of the system.

• Capture common patterns of strengthening induction hypotheses
in custom induction principles (Section 5). These principles
employ overapproximations (e.g., on the set of reachable states)
to simplify proofs and improve modularity (e.g., allowing op-
erations to be reordered while minimizing proof change as
discussed in Section 8).

• Exploit the structure of the system to prove higher-order affinity
lemmas, which show that any property proved about a particular
component can be used to guarantee analogous properties about
its related components (Section 6). This allows a developer to
update proofs for one component after a change and maintain
results for related components without additional rework.

• Ensure that proofs tolerate adding, reordering, and renaming
hypotheses with structural tactics (Section 7). These tactics
support strengthening invariants without changing the proofs
that use them.

Some of our methodology’s recommendations, such as infor-
mation hiding, mirror well-known recommendations for designing
and implementing well-structured software [33]. In these cases, our
contribution is to adapt them to formal verification. Other recom-
mendations, such as our notion of structural tactics, are new. We
suspect that some of our recommendations are already known to
verification experts, but we believe it is valuable to codify them to
help other research groups avoid the expensive and painful process
of re-discovering these insights.

Adopting this methodology accelerated our proof efforts and
provided benefits exceeding its relatively high initial design costs.
When we started verifying Raft, we wrote proofs largely without
considering their robustness to change. We quickly discovered that
most of our verification effort was devoted to reworking proofs in
response to small changes during the iterative development process.

For example, while developing our first proof of a Raft invariant,
changing the plan (as part of the iterative process discussed above)
meant updating nearly every line of the proof constructed so far.

network := {
nwState : name -> data;
nwPackets : list (name * name * payload);
failed : list name

}
Inductive step : network -> network -> trace -> Prop :=
| step_drop :
forall st xs p ys f,
step {st, xs ++ p :: ys, f} {st, xs ++ ys, f} []

| step_input :
forall ps h inp,
not (In h failed) ->
handleInput h inp (st h) = (st’, out, ps’) ->
step {st, ps, f} {st[h := st’], ps ++ ps’, f}

[inp, out]
| step_deliver :
forall xs ys src dst m st f d’ out ps’,
not (In dst f) ->
handleMessage dst src m (st dst) = (d’, out, ps’) ->
step {st, xs ++ (src, dst, m) :: ys, f}

{st[dst := d’], xs ++ ys ++ ps’, f} [out]
| ...

Figure 1. Verdi network semantics pseudocode supporting network
and node failure. A semantics is defined as a ternary relation
over pre- and post-network state and trace of externally-visible
I/O events. failed is a list of failed hosts, which cannot receive
messages or inputs. st[h := d’] denotes an update to the map
st, setting the value for key h to d’.

After we refactored the proof to make our theorem statements and
proofs robust against change in the definitions on which they rely,
we found that our codebase more easily incorporated fixes during
the development process. As another example, Section 8 discusses
a case where our approach allowed us to implement a performance
optimization while requiring only minor changes to the proof.

In summary, we make the following contributions:

• We present the first formal verification of an implementation of
the Raft consensus protocol.

• We present a methodology to reduce rework in response to
changes in definitions and theorems during the iterative system
verification process.

• We describe our experience applying these techniques during
our implementation and verification of Raft and discuss how
they may be applied to systems verification more broadly.

2. Verdi Background
Verdi [39] is a general framework for implementing and formally
verifying distributed systems in the Coq proof assistant. In Verdi,
a distributed system is implemented as a finite set of processes,
which communicate by exchanging messages over a network. A
system can also communicate with the outside world via input and
output. The behavior of a system is specified by its event handlers,
including handleMessage and handleInput, which can be ex-
tracted to OCaml and run on real networks using a small trusted
shim. Proofs about systems in Verdi are carried out with respect
to a network semantics, which encodes the system’s assumptions
about the behavior of the underlying network, e.g., what kinds of
failure may occur. Figure 1 shows pseudocode for part of a network
semantics that includes network and node failure.

Verdi introduced verified system transformers to separate fault
tolerance mechanisms from application logic. As shown in Figure 2,
a verified system transformer is a function whose input is a sys-
tem implementation that is verified with respect to one network
semantics and whose output is a new system implementation that is

SA Φ(SA)

SB lift(Φ)(SB)

transformer transformer
correctness

Figure 2. A verified system transformer takes a system (SA)
written against some network semantics and returns a new system
(SB) in another semantics. Its correctness property states that
for any property Φ of the original system, a lifted version of that
property holds on the transformed system.

verified with respect to a different network semantics. For instance,
a verified system transformer could add sequence numbers to mes-
sages in order to tolerate message duplication. Each transformer
comes with a correctness result that shows that one can reason about
the transformed system in terms of the original system.

3. Implementation and Verification of Raft
This section provides background on Raft [32] as well as its im-
plementation and verification in Verdi. Sections 4 to 7 describe the
methodology we developed to successfully complete our proof of
Raft.

3.1 Raft

Raft is a state machine replication protocol. The state machine
is a deterministic program that specifies the desired behavior of
the cluster as a whole. The state machine processes a sequence of
commands, which are given by the clients of the cluster. External
clients interact with the system as if it were a single node running
a single copy of the state machine.

Each node in a Raft cluster simulates a copy of the state machine,
and the goal of the protocol is to maintain consistency across the
copies. Replication allows the system to continue serving clients
whenever a majority of machines are available. However, main-
taining consistency among replicas is difficult in the presence of
asynchrony, network failures (packet drops, duplications, and re-
ordering) and node failures (crashes and reboots). In particular, the
combination of asynchrony and failure means that the nodes in the
system are never guaranteed to be in global agreement [11].

Since Raft requires that the state machine it replicates is deter-
ministic, the replicas will be consistent as long as the same client
commands are executed on each replica’s copy in the same order.
Raft’s main internal correctness invariant, called state machine
safety, captures this property.

Property 1 (State Machine Safety). Each replicated copy of the
state machine executes the same commands in the same order.

The list of commands to execute on the state machine is kept in
the log, and the position of a command in the log is called its index.
Each node has its own copy of the log, and state machine safety
reduces to maintaining agreement between all copies of the log.

Figure 3 shows an example execution of the Raft protocol.2 Time
is logically divided into terms, and each term consists of a leader
election phase followed by a log replication phase. During leader
election, the cluster chooses a leader, who coordinates the cluster
and handles all communication with clients during the following
log replication phase. Nodes are either leaders, candidates, or fol-
lowers. Candidates are in the process of trying to become leader.

2 https://raft.github.io/ has a visualization of Raft in operation.

time

node 3

node 2 . . .

node 1

RV V AE Ack

A B C D E F

term 1 term 2

election replication election

Figure 3. Two terms of the Raft protocol, each consisting of a
leader election phase (orange) followed by a log replication phase
(blue). Node 3 is the leader of the first term, and node 1 is the
leader of the second term. Messages are RequestVote (RV), Vote
(V), AppendEntries (AE), or Acknowledgment (Ack). represents
a dropped message and represents a crashed node.

Followers passively obey the leader of the current term and respond
to RequestVote messages from candidates.

Leader Election If the leader node crashes or is isolated by a
network partition (e.g., node 3 at event E in Figure 3), the Raft
system elects a new leader. When a node times out waiting to hear
from a leader (as node 1 does at event F in Figure 3), it becomes a
candidate.3 A candidate tries to get itself elected as the new leader
by sending messages requesting votes from all other nodes. Once
a candidate receives votes from a majority of nodes in the system,
it becomes the leader. If no candidate successfully wins the election,
a new election will take place following a timeout. Requiring a
majority ensures that there is only one leader elected per term.

Property 2 (Election Safety). There is at most one leader per term.

Log Replication During normal operation, the cluster is in the
log replication phase. In log replication, when a client sends an
input to the leader 4 (e.g., at event A in Figure 3), the leader first
appends a new log entry containing that command to its local log.
Then the leader sends an AppendEntries message containing the
entry to the other nodes in the Raft system. Each other node appends
the entries to its log (e.g., at event B in Figure 3), and responds to
the leader with an acknowledgment. To ensure that follower logs
stay consistent with the log at the leader, AppendEntries messages
include the index and term of the previous entry in the leader’s log;
the follower checks that it too has an entry at that index and term
before appending the new entries to its log. This consistency check
guarantees the following property:

Property 3 (Log Matching). If two logs contain entries at a partic-
ular index and term, then the logs are identical up to and including
that index.

Once the leader learns that a majority of nodes (including it-
self) have received the new entry (e.g., at event C in Figure 3), the
leader marks the entry as committed. 5 Note that the leader need not
receive acknowledgments from all nodes before proceeding (e.g.,
an acknowledgment is dropped at event D in Figure 3, but nodes 2
and 3 constitute a majority). The leader then executes the command

3 Timeouts are randomized and configured so that candidates rarely compete
for leadership. See Ongaro’s thesis for more detail on the leader election
process [30].
4 Raft implementations have various mechanisms for clients to locate the
leader. In our implementation, clients can send their operations to every
node in the cluster until the leader is found.
5 Committing old entries (those from leaders who failed before completely
replicating them) is more complex; see the Raft paper [32] for details.

https://raft.github.io/

contained in the committed entry on the state machine and responds
to the client with the output of the command. The followers are also
informed that they can safely execute the command on their state
machines.

Once an entry is committed, it becomes durable, in the sense that
its effect will never be forgotten by the cluster. To ensure that leader
elections do not violate this property, a new leader must have heard
of all committed entries created by the previous leader. Therefore,
Raft specifies that a node only votes for candidates whose log is at
least as advanced as the voter’s. Because a newly elected leader was
voted in by a majority, it has a log that is at least as advanced as a
majority of the cluster. Since any committed entry is present on a
majority, every committed entry is present on at least one node that
voted for the candidate. The successful candidate’s log thus contains
every committed entry.

Property 4 (Leader Completeness). A successfully elected candi-
date’s log contains every committed entry.

Client-facing correctness Clients expect to interact with Raft
nodes as if the nodes were collectively a single state machine.
More formally, clients see a linearizable view of the replicated
state [17], i.e., if any node responds to a client command c, all
subsequently requested commands will execute on a state machine
that reflects the execution of c. Section 3.3 gives a precise definition
of linearizability.

Property 5. Raft implements a linearizable state machine.

Raft also provides a liveness guarantee: if there are sufficiently
few failures, then the system will eventually process and respond
to all client commands. To date, we have only verified Raft’s safety
properties, leaving liveness for future work.

3.2 Raft Implementation using the Verdi Framework
We implemented Raft as a verified system transformer from a sin-
gle node semantics with no faults to a multi-node semantics with
network and machine faults. To use the transformer, a programmer
first implements an algorithm as a (non-distributed) state machine
in which a single process responds to input from the outside world.
Then, Raft transforms this into a system where the original state
machine is consistently replicated across a number of nodes. As a
result, the programmer can prove properties about the replicated
system by reasoning only about the underlying state machine. The
Raft transformer produces a system that is proven correct in an
environment in which all messages can be arbitrarily reordered,
duplicated, delayed, or dropped, and in which nodes can crash and
reboot. These faults correspond to the real world failure scenarios
that Raft is designed to tolerate.

Figure 4 shows signatures for key parts of Raft as implemented
in Verdi 6. There are two classes of messages: external messages
(inputs from clients) and internal messages exchanged between
nodes in the system.

Raft has three kinds of external messages. Nodes running Raft
receive ClientRequest messages from external clients; each such
message contains a command of type cmd, which is a parameter
of the system. These are delivered in the step_input step in Fig-
ure 1. Nodes respond with NotLeader to indicate that the client
should find the current leader or ClientResponse, containing
the result of the command, once the system has successfully pro-
cessed a client command. To ensure that network failures do not
cause a single client command to be executed multiple times, each
ClientRequest includes a unique identifier, shown as uid in Fig-
ure 4. Raft guarantees that a request with a given identifier will only
be executed once. Clients can thus repeatedly retry a request; when

6 For more detail, see raft/Raft.v at https://github.com/uwplse/
verdi/tree/cpp2015.

input := ClientRequest (c : cmd) (uid : nat)...

output := ClientResponse (uid : nat) (r : result) ...
| NotLeader

handleInput (i : input) :=
match i with
| ClientRequest ...
end;
leaderHeartbeat();
executeEntries()

(* internal Raft messages *)
msg := RequestVote ...

| Vote ...
| AppendEntries ...
| Acknowledgment ...

handleMessage (m : msg) :=
match m with
| AppendEntries ...
| Acknowledgment ...
| RequestVote ...
| Vote ...
end;
leaderHeartbeat();
executeEntries()

handleTimeout :=
...; leaderHeartbeat(); executeEntries()

leaderHeartbeat :=
(* send AppendEntries to followers *)
(* mark entries as committed *)
...

executeEntries :=
(* execute entries on the local state machine *)
(* respond to clients if necessary *)

logEntry := { c : cmd;
index : nat;
term : nat; ... }

nodeType := Leader | Candidate | Follower

data := { log : list logEntry;
commitIndex : nat;
term : nat;
type : nodeType;
sm : stateMachine; ... }

init : data := { log := [];
commitIndex := 0;
term := 0;
type := Follower;
sm := initialStateMachine; ... }

Figure 4. Signatures of key parts of our Raft implementation.

a client receives a ClientResponse with the same uid, it knows
the command has executed exactly once on the state machine.

Raft has four kinds of internal messages: AppendEntries and
Acknowledgment, used in log replication, and RequestVote and
Vote, used in leader election. These messages correspond directly
to the behavior described in Section 3.1.

Our Raft implementation consists of event handlers for ex-
ternal messages, internal messages, and timeouts. Each of these
handlers begins with some event-specific code and then calls two
bookkeeping functions, leaderHeartbeat and executeEntries.

https://github.com/uwplse/verdi/tree/cpp2015
https://github.com/uwplse/verdi/tree/cpp2015

leaderHeartbeat performs leader-specific tasks, such as sending
AppendEntriesmessages to followers and marking entries as com-
mitted. executeEntries performs tasks that should be done by ev-
ery server, such as executing committed entries on the state machine.

The local state of each Raft node is given in Figure 4 by the type
data and includes the log, the index of the most recently committed
entry, the node’s current term, the node’s type (Leader, Candidate,
or Follower), and its copy of the state machine. The log is a list
of entries, each of which contains a command to be executed on the
state machine, its index (position in the log), and the term in which
the entry was initially received by the cluster.

The initial state of each node is given by the value init. The
log is initially empty, no entries are committed, the current term is
0, every node is a follower (nodes will time out and start an election
in term 1 to determine the first leader), and the state machine is in
its initial state, having not yet processed any commands.

Our verified implementation of Raft in Coq consists 530 lines of
code and 50,000 lines of proof, excluding code from the core Verdi
framework. It does not support extensions to Raft which are useful
in practice, such as dynamic reconfiguration and log compaction.
It also includes more data on Acknowledgment messages than is
necessary. These limitations are not fundamental, but addressing
them would increase the proof burden.

3.3 Raft Proof
The behavior of a Verdi system is described by traces, which record
the interaction between the system and its clients. Internal messages
sent between nodes of the system are not included in the trace, as
they are not observable by clients of the cluster. For example, if
Raft is used to replicate a simple key-value store, a valid trace of
the resulting system might be:

[ClientRequest (Put "x" "hello") 1;
ClientResponse 1 "";
ClientRequest (Get "x") 2;
ClientResponse 2 "hello"].

In this execution, a client first sends a ClientRequest containing
a command to set the key "x" to the value "hello"; this request is
assigned the unique identifier 1. The system then sends a response
containing the empty string as its result, which serves as an acknowl-
edgment that the Put has taken place. The client then sends a request
to read the value of the key "x"; the request is assigned the unique
identifier 2. Finally, the system responds with the value "hello".

The correctness of a system transformer such as Raft is a relation
that must hold between the traces generated by the transformed
system and those generated by the original system. In Figure 2, this
relation is called lift.

The relational specification of the Raft transformer is that the
traces it generates linearize (see below) to traces generated by the
single-node state machine. Intuitively, linearizability means that
once the Raft cluster sends a ClientResponse for a command
c, the execution of all subsequently issued commands will reflect
the execution of c. More precisely, a trace of a replicated system
linearizes to a trace of the underlying system if its operations can
be reordered to match the underlying trace without moving an
incoming command before a previously acknowledged command.
For example, in Raft, the system can reorder concurrently issued
client requests, but if a request is received after a previous request
is acknowledged, then the system must respect that ordering.

We formalize the linearizes-to relation as follows.7

Definition 1 (Linearizes-to). Let τ be a trace of inputs and outputs,
where each input-output pair is given a unique key. Then τ linearizes

7 The relevant Coq development is raft/Linearizability.v at
https://github.com/uwplse/verdi/tree/cpp2015.

to a sequence of state machine commands σ if the events of τ can
be reordered into a trace τ ′ such that

1. τ ′ is sequential, i.e., it consists of alternating inputs and outputs
with matching keys;

2. τ ′ agrees with σ, i.e., they consist of the same sequence of
commands, and each output in τ ′ equals the result given by the
corresponding command in σ; and

3. if an output o appears in τ before an input i, then o also appears
before i in τ ′.

Note that this definition requires τ and σ to contain the same set
of commands. Thus, we can define linearizability:

Definition 2 (Linearizability). A trace τ is linearizable if there ex-
ists a sequence σ of state machine commands such that τ linearizes
to σ.

This definition captures the notion of linearizability, but estab-
lishing it directly for Raft would be difficult because it would require
strengthening it to be an inductive invariant of the system. Instead,
we proved Raft linearizable by relating the system’s trace to the
local state of each node and the set of packets in the network.

First, we related the trace of the system to each node’s local
copy of the state machine via state machine safety (Property 1
from Section 3.1). Proving linearizability from state machine safety
required proving each of the conditions in Definition 1 by reducing
each to an internal property of Raft. We discuss our mechanism for
proving such relations in more detail in Section 5.2.

Theorem 1. State machine safety implies linearizability.8

Proof. Given an execution trace τ of Raft, we must find σ such that
τ linearizes to σ. There is an obvious choice for σ: it is just the
sequence of commands executed by the nodes on their local state
machines. State machine safety guarantees that the nodes agree on
this sequence, so our choice is well defined.

It remains to show that τ linearizes to σ. In other words, we must
find τ ′ such that the conditions of Definition 1 are satisfied. Let τ ′

be the sequential input–output trace corresponding to σ, i.e., for
each command of σ, τ ′ contains an input immediately followed by
the corresponding output for that command. Then τ ′ is sequential
and agrees with σ by construction, and it remains to show that τ ′

is a permutation of τ that respects the ordering condition (item 3)
of Definition 1. Each of these is established as a separate invariant
by induction on the execution.

This result was formalized and proved as part of our work on
verified system transformers [39]. The remainder (and vast majority)
of our Raft verification effort establishes state machine safety. Since
each node executes commands on its state machine as entries be-
come committed in the node’s log, state machine safety requires that
nodes never disagree about committed entries. The proof of State
Machine Safety requires the use of ghost variables. Ghost variables
are components of system state that are tracked for the purposes of
verification but not needed at run time. This state is therefore not
tracked in the extracted implementation. For more information, see
the Verdi paper [39].

Theorem 2 (State Machine Safety). State machine safety holds for
every reachable state of the system.9

8 This argument is formalized in raft/RaftLinearizableProofs.v,
along with the lemmas imported by that file.
9 The top-level proof is in raft-proofs/StateMachineSafetyProof.v.
The ghost variables required are specified in raft/RaftRefinement
Interface.v and raft/RaftMsgRefinementInterface.v.

https://github.com/uwplse/verdi/tree/cpp2015

ghostData := {
(* list of term, candidate this node voted for,
log at time of vote *)

votes : list (nat * name * list logEntry);

(* term -> list of nodes who voted for
this node in that term *)

cronies : nat -> list name;

(* term, log when this node became leader *)
leaderLogs : list (nat * list logEntry);

(* list of term, entry:
all entries ever present in log at this node*)

allEntries : list (nat * logEntry)
}

ghostHandleMessage (m : msg) :=
match m with
| AppendEntries ... =>
(* If entries added to log, add to allEntries
and tag with current term *)

| RequestVote ...
(* If voting, add the current term,
the candidate’s name,
and the current log to votes *)

| Vote ...
(* Add sender to cronies at current term *)
(* If node becomes leader, add current term
and log to leaderLogs *)

end

Figure 5. Ghost variables used in the verification of Raft

Proof Sketch. First strengthen the induction hypothesis to quantify
over ghost state and appropriately constrain each node’s history.
Next proceed by induction on the step relation, and in each case
show that the strengthened hypothesis is preserved.

The proof of State Machine Safety requires several ghost vari-
ables on local data, as well as one on messages. Figure 5 shows
pseudocode for the local data ghost state, including the ways in
which it is updated in response to incoming messages. Intuitively,
each ghost variable stores part of the system’s history, which is
not tracked in the actual implementation but which is necessary for
proofs. For example, a node in the system does not actually need
to keep a record of every vote that it has every cast; it is sufficient to
track only the vote for its current term. However, in order to prove
that only one leader is elected per term, the proof uses the votes
ghost variable. We use the ghost state to establish the Election Safety
and Leader Completeness properties, from which we then prove
State Machine Safety. As an example, we show how Election Safety
follows using these ghost variables.10

Theorem 3 (Election Safety). Election safety is true in every reach-
able state of the system.11

Proof Sketch. If a node is a leader, then it has a majority of nodes
in its cronies for that term. A node h does not appear in cronies
at a node h′ unless h′ is in votes at h for the same term. A node
only votes for one leader for each term. If there are two leaders for
one term, at least one node h must be in cronies at both leaders
since they each have a majority. That node must have voted for both
of them at that term, so they must be the same node. Therefore,
Election Safety holds.

10 The proof of Leader Completeness is available in raft-proofs/
LeaderCompletenessProof.v.
11 See raft-proofs/OneLeaderPerTermProof.v.

4. Information Hiding
Sections 4 to 7 describe our recommendations and detail how we
applied them to complete the Raft proof. This section shows how
to extend classical information hiding techniques with interface
lemmas that support formal reasoning about hidden definitions.

In software development, hiding information from clients (e.g.,
callers of functions) prevents them from depending on implemen-
tation details and thus enables code to be updated without requiring
any change to clients. Applying these software engineering princi-
ples in the context of proof assistants can significantly reduce the
cost of rework in response to the inevitable changes that arise during
the iterative system verification process. However, to apply tradi-
tional information hiding techniques in the context of Coq requires
enriching the traditional notion of interface to support formally
reasoning about hidden definitions, rather than just using them.

The core challenge to applying information hiding techniques in
Coq arises due to the nature of equality as it is defined in Coq. Coq
relies on definitional equality, which captures the computational
behavior of terms. Since evaluation depends on a term’s definition,
techniques that hide the details of how a term is defined typically
also hide that term’s definitional equalites, and thus make equality
proofs over that term much more difficult or impossible.

Typical systems developments in Coq try to ease the proof effort
by exposing all details of their functions and type definitions.12 The
result is predictable: once the system has been verified, it tends to
“freeze”, since making any change to one part of the system impacts
many other parts of the system and requires reworking numerous
proofs. To address this difficulty, we recommend hiding the defini-
tion of functions and datatypes, but enriching their interfaces with
all the necessary lemmas to reason about them throughout the rest
of the system.

Recommendation 1. Hide the definitions of functions and types
behind interfaces, and expose only the facts needed through lemmas
in the interface.

Following this recommendation, definitions are only unfolded
in proofs of their interface lemmas. Then all other proofs in the rest
of the system must be completed in terms of the interface lemmas.
This allows details of the implementation to be changed without
affecting any clients, as long as all the interface lemmas can still be
proven for the updated implementation. It is difficult to determine
a complete set of interface lemmas in advance. When one discovers
that the interface is not sufficient to prove a particular theorem,
one can add additional lemmas to the interface without forcing any
other clients to change. Less often, the interface must be changed in
response to an implementation change. This may require updating
clients, but only those that use the particular parts of the interface
that have been updated.

Throughout our Raft proof, we specified and proved interface
lemmas characterizing the behavior of all message handlers and
helper functions; two examples are shown in Figure 6. Many of
these interface lemmas “overlap,” in that they are more general
versions of another interface lemma which we found to be too
specialized to its original use. However, instead of changing the
interface and updating numerous proofs, our approach allowed us
to simply extend the interface and continue making progress. Also,
these lemmas often specify the behavior of functions (especially
message handlers) at various levels of detail depending on the needs
of the client (i.e., the invariant proof that uses the specification

12 There are a few notable exceptions to this rule [3, 12, 25]. For example, the
Coq standard library includes implementations of some data structures that
use module signatures to hide implementation details. This is a step in the
right direction, but such techniques should be more widely used, even when
a clean interface is not available in advance, and so some churn is expected.

(* Simple specification lemma *)
Lemma handleTimeout_log :
forall h st out st’ l,
handleTimeout h st = (out, st’, l) ->
log st’ = log st.

(* More complex specification lemma *)
Lemma handleAppendEntries_type :
forall h st st’ ps,
handleAppendEntries h st ... = (st’, ps) ->
type st’ = Follower \/ (type st’ = type st /\
currentTerm st’ = currentTerm st).

Figure 6. Two specification lemmas. The first states that the
timeout handler never modifies the Raft log. The second states that
the AppendEntries handler either maintains the node’s type and
term or changes the node’s type to Follower.

lemma). For example, for some invariants, the only fact needed
about Raft’s timeout handler is that it does not modify the log. When
proving an invariant about Raft, we never unfold the definition of a
handler function, and instead always apply the relevant specification
lemmas. This makes invariant proofs more maintainable, as they
will continue working even if the definition of the handler function
changes, as long as the new definition leaves the log unchanged.

5. Custom Induction Principles
The majority of theorems in our Raft verification establish properties
about the system by induction over the step relation that defines
potential network behaviors. In building modular and maintain-
able proofs of these theorems, we employed common patterns of
strengthening induction hypotheses. We captured these patterns
in custom induction principles. These principles typically use
overapproximations to simplify proofs and improve modularity.

Recommendation 2. Factor out common inductive arguments into
custom induction principles.

Developing these custom induction principles allows a com-
mon reasoning pattern to be proved once and then used throughout
the development. It also helps ease proving by handling various
common bookkeeping details. Additionally, these custom induc-
tion principles improve proof maintainability: some system changes
(e.g., as discussed in Section 8) maintain the validity of induction
patterns, meaning that the induction principle must be reproved but
proofs using the principle continue to be valid without any modifica-
tion. These principles can be implemented by either creating a new
Inductive type in order to use its automatically generated induc-
tion principles (see Section 5.1) or by proving a theorem that pro-
vides a new induction principle for an existing type (see Section 5.2).

5.1 Intermediate Reachability

As discussed in Section 3.2, the implementation of Raft in Verdi
consists of event handlers which process client requests, timeouts,
and internal messages exchanged between nodes of the system. All
of these handlers call two helper functions, leaderHeartbeat and
executeEntries, which run on every event and perform common
tasks such as committing log entries and executing commands.

To show that a property is an invariant of a Verdi system, one
typically proceeds by induction on the execution of the system.
The base case requires showing that the property is true for the
initial state of all nodes in the empty network, before any events are
handled. The induction case requires showing that the property is
preserved by all event and message handlers.

In Raft, since each top-level handler consists of a branch on
the kind of event followed by specialized handling code for that

Inductive raft_intermediate_reachable : state -> Prop :=
| RIR_init : raft_intermediate_reachable init
| RIR_step :
forall net net’,
raft_intermediate_reachable net ->
step net net’ ->
raft_intermediate_reachable net’

| RIR_leaderHeartbeat :
forall net net’,
raft_intermediate_reachable net ->
one_node_leader_heartbeat net net’ ->
raft_intermediate_reachable net’

| ...

Lemma RIR_properties_inductive :
forall (P : network -> Prop),
(forall net,
raft_intermediate_reachable net -> P net) ->

(forall net, step_star init net -> P net)

Figure 7. Intermediate reachability is defined inductively as a
predicate on states. States reachable via the network semantics’ step
relation are reachable. States reachable via Raft-specific actions
such as a leader heartbeat are also reachable.

event, a direct proof would proceed by case analysis on the kind
of event and then reason about each branch independently. The
three top-level handlers make calls to leaderHeartbeat and
executeEntries, whose tasks are independent of the event being
handled. Direct proof by case analysis would thus require reasoning
about leaderHeartbeat and executeEntries multiple times.
Instead, these cases should each be proved to preserve the invari-
ant once. To do so requires constructing intermediate states of the
system that occur before and after the calls to these helper func-
tions. These intermediate states may not themselves be reachable
under the network semantics. Instead, we introduce the notion of
intermediate reachability (shown in Figure 7), which rephrases
the network semantics into event specific handlers, helper func-
tions, and the network and machine faults. Note that network states
which are reachable via this relation are not necessarily reachable
in the running system; the set of intermediate-reachable states is
a strict superset of the set of actually reachable states. Thus, if a
property holds for all intermediate-reachable states, it is guaran-
teed to hold for all actually reachable states. To use intermediate
reachability to prove an invariant of Raft, we prove that event- and
message-specific handling code, as well as executeEntries and
leaderHeartbeat all preserve the invariant.

5.2 Trace Relations

Proving linearizability requires relating the external trace of events
generated by Raft to its internal state and previous input events. In
general, one may wish to show that a trace property implies an in-
ternal state property, or that a state property implies a trace property.
For example, a client response should only be present in the trace
when the relevant command has been executed on the state machine.
As an example in the other direction, Raft should never execute
a command on the state machine that was not requested by some
client. Verdi provides a general method of showing relationships of
both types, which we refer to as trace relations and inverse trace
relations.13

A trace relation shows that if a trace property T holds on a
particular execution, then a state property R is guaranteed to hold
on the final state of that execution, under appropriate assumptions
about T and R. In particular, a trace relation requires that R is stable,

13 See core/TraceRelations.v, core/InverseTraceRelations.v

T is initially false, T is decidable,14 and in any step where T becomes
true, R is guaranteed to also be true.

Variable (T : trace -> Prop) (R : network -> Prop).
Class TraceRelation := {
R_stable : forall net net’ ev,
R net -> step net net’ ev -> R net’;

T_false_init : ~ T [];
T_dec : forall t, decidable (T t);
T_implies_R : forall net net’ t,
step_star init net t ->
step net net’ ev ->
~ T t -> T (t ++ [ev]) -> R net’ }

In the example above, T is “command c has a response in the
trace,” and R is “command c has been executed by at least one state
machine.” In this example, R is stable because nodes never undo the
execution of a command; T is initially false, since the empty trace
contains no responses; T is decidable, assuming decidable equality
of commands; and T implies R since a node outputs a response only
after executing the command.

One can then show that trace relations are valid, in the sense that
any execution satisfying T also satisfies R.

Theorem trace_relation_valid :
forall (TR : TraceRelation) net t,
step_star init net t ->
T t -> R net.

Proof.
(* by induction on step_star.
in the base case, T_false_init contradicts
the hypothesis T t.

in the inductive case,
decide whether T holds before the step.

if so, then induction hypothesis shows that
R is true in the pre state, and R_stable
implies that R is true in the post state.

if not, T_implies_R applies to show that R
is true in the post state. *)

Qed.

Inverse trace relations are proved similarly, except with the roles
of T and R flipped. Thus R should be false initially, T should be
stable, and if R is false, but a step causes it to become true, then T
must be true on the resulting trace.

6. Affinity Lemmas
In many systems, proving a property about one component im-
mediately implies analogous properties about related components.
We recommend taking advantage of such relationships by proving
higher-order affinity lemmas, which show that a property established
for a particular component immediately guarantees an analogous
property for its related components.

Recommendation 3. Exploit relationships between system compo-
nents to show that properties established for a particular component
imply analogous properties for related components.

In our proof of Raft, we used two instances of this technique,
both related to the Raft log. The first shows that any invariant of the
log is also an invariant of log data structures elsewhere in the system,
including on ghost variables. The second shows that any invariant
of the data on an AppendEntries message is also an invariant of
the data on an Acknowledgment.

14 Coq is based on constructive logic, which allows case analysis only
on propositions proved to be decidable, i.e., those for which there is a
computable function that decides whether the proposition is true or not.

Lemma AE_message_symmetry’ :
forall net p,
raft_intermediate_reachable net ->
In p (nwPackets net) ->
body p = Acknowledgment ... ->
exists net’ q,
raft_intermediate_reachable net’ /\
src q = dst p /\ dst q = src p /\
body q = AppendEntries ... /\
nwPackets net’ = q :: nwPackets net.

Proof.
(* by induction on raft_intermediate_reachable.
an Acknowledgment is sent only in response
to an AppendEntries message, which can be
duplicated before delivery to provide q. *)

Qed.

Lemma AE_message_symmetry :
forall P,
(forall net p,
raft_intermediate_reachable net ->
In p (nwPackets net) ->
body p = AppendEntries data ->
P (nwState net) data) ->

forall net p,
raft_intermediate_reachable net ->
In p (nwPackets net) ->
body p = Acknowledgment data ->
(lift_to_entries P) (nwState net) data.

Figure 8. Symmetry lemma for AppendEntries messages. This
lemma relates the data AppendEntries and Acknowledgment
messages, showing that any property true of one is true of the other.

6.1 Representation Invariants on Logs
There are several representation invariants Raft maintains on logs.
For example, our implementation of Raft represents logs as lists of
entries, sorted in decreasing order of index. Logs never contain two
entries with the same index, and all indices are greater than 0. To
complete our proof of safety, we needed these properties on all the
logs in Raft, including the log at each host as well as logs in ghost
variables. Instead of proving these properties for each occurrence
of a log in Raft we proved an affinity lemma: if any property holds
of every entry in a node’s log, then it is also true of every entry in
the logs in ghost variables.15

Lemma votes_affinity :
forall (P : logEntry -> Prop),
(forall net h e,
raft_intermediate_reachable net ->
In e (log (nwState net h)) -> P e) ->

forall net h e n,
raft_intermediate_reachable net ->
In (n,e) (allEntries (nwState net h)) -> P e.

Proof.
(* by induction on raft_intermediate_reachable,
since the only entries present in allEntries
were at one time also present in the log *)

Qed.

6.2 Message Symmetry
Raft nodes exchange messages to (1) hold leader elections and (2)
replicate state machine operations. Each of these two operations has
its own request and reply messages. Since nodes only send replies
in response to requests, the existence of a reply guarantees the past
existence of a corresponding request. Furthermore, since packets can

15 See raft/GhostLogsLogPropertiesInterface.v.

be arbitrarily duplicated and reordered, any packet that existed in
the past could have been duplicated and then not delivered, leaving
a copy of it in the current network. Thus in any reachable network
where there exists a reply packet p, there exists another reachable
network with identical state at each host and the same network but
with an additional request packet whose metadata corresponds to
that of p. As shown in Figure 8, we use this fact to show that any
invariant relating the metadata on each AppendEntries message
to the global node state holds on the reply messages as well.16

Note that both affinity lemmas described in this section are
higher-order: they hold for all properties. This kind of quantifica-
tion over properties is very comfortable in Coq, and improves the
usability of affinity lemmas.

7. Proof Engineering
This section describes some concrete “proof engineering” techniques
that we found significantly improved our experience verifying Raft.
These techniques address lower-level concerns than the techniques
described in the preceding sections. Section 7.1 describes a de-
sign principle for structural tactics which are robust to changes
in the proof context in which they run. Section 7.2 describes a
code structuring approach to separate proofs from the statement
of their theorems which drastically improves build times and thus
accelerates the iterative edit-recompile process.

7.1 Tactics for Robust Development
There are several competing proof styles in the Coq community,
ranging from using only the built-in tactics stitched together in a
“tactic soup”, to small-scale reflection [13], to full tactic automation
in the style of Chlipala’s CPDT textbook [7], and each provides
different development and maintenance tradeoffs. We ultimately set-
tled on a middle ground between full automation in Chlipala’s style
and the more traditional “tactic soup” approach. In particular, we
carefully avoid using any automatically generated names or relying
on the order of hypotheses. An initial version of this approach was
advocated to us by Greg Morrisett [15].

Recommendation 4. Make proof scripts robust against renaming
and reordering hypotheses by not relying on automatically generated
hypothesis names and hypothesis ordering.

As an example, given a hypothesis that is an equality, instead
of rewriting by using its name, one instead invokes a custom
find_rewrite tactic, which searches the proof context for an
equality, and rewrites using it. This allows the rewrite to continue
working even if the surrounding definitions, hypothesis names, or
lemma names change in the future. If instead the call to the rewrite
tactic explicitly used an automatically generated name, then chang-
ing any definition that caused a different set of hypotheses to be
present when the rewrite tactic is run will cause the step to fail or
rewrite the wrong subterm.

Consider the following example lemma.

Variable (A B : Type) (f g : A -> B) (P : B -> Prop).
Definition eg : Prop := (forall x, P (g x)) ->
(forall x, f x = g x) -> forall x, P (f x).

Lemma eg_soup : eg.
Proof. unfold eg. intros. rewrite H0. auto. Qed.

This lemma proves that for any functions f and g of type A -> B,
if a predicate P holds on all outputs of g, and if f and g are exten-
sionally equal, then P also holds on all outputs of f. While obvious
and simplistic, this lemma and its proof are similar to those that are
developed in practice. The “tactic soup” proof above unfolds the
statement of the lemma and then uses the intros tactic to move the

16 See raft/AppendEntriesRequestReplyCorrespondenceInter-
face.v.

hypotheses into the context, assigning them automatically generated
names. Then, the goal is rewritten using the extensional equality
between f and g, at which point the tactic auto can finish the proof
using the fact that P holds on all outputs of g.

To illustrate why this proof is not robust in the face of changes
to the underlying definitions, consider adding a new consequence,
Q, to the conclusion of the lemma.

Variable Q : B -> Prop.
Definition eg : Prop := (forall x, P (g x)) ->
(forall x, P (g x) -> Q (g x)) ->
(forall x, f x = g x) ->
forall x, P (f x) /\ Q (f x).

The new statement adds a hypothesis stating that if P is true on
an output of g, then Q is also true on that output of g. Under this
hypothesis, it follows that P and Q are true of all outputs of f.

Now consider how to update the old proof to this new context.

Lemma eg_soup : eg.
Proof. unfold eg. intros. rewrite H1. auto. Qed.

The proof is almost identical to the previous one, except that the
automatically generated name of the extensional equality hypothesis
has changed, and so the proof had to be updated to use the new name.

A structural proof of the lemma achieves context independence
by using the find_rewrite tactic to search for a hypothesis and
rewrite by it in the goal.

Lemma eg_structural : eg.
Proof. unfold eg. intros. find_rewrite. auto. Qed.

When the new hypothesis and conjunct are added, the proof
script can remain entirely unchanged.

This illustrates a well-known downside to using automatically
generated names, and many users of Coq advocate explicitly assign-
ing names to hypotheses on introduction. Explicit names certainly
improve maintainability and readability of proofs, but they do not
achieve the full benefits of structural tactics, since the name assign-
ment must be manually updated whenever the context is changed.
These changes seem trivial in a small-scale example, but become
a major pain point in real-world proof developments.

More generally, instead of using hypothesis names, we use Coq’s
tactic language, Ltac, to declaratively specify which hypothesis
should be used. These Ltac snippets can either be designed on a
case-by-case basis, or packaged into generally useful structural
tactics, such as find_rewrite, which finds an equality anywhere
in the contexts and rewrites by it somewhere else in the context or
goal. We have found that this development style leads to structural
properties for our tactic scripts. Adding additional hypotheses, re-
moving redundant hypotheses, and reordering hypotheses should
not cause proof scripts to break. These properties correspond to
the well-known weakening and exchange properties enjoyed by
standard type systems [34].17

Weakening A type system satisfies weakening if the typing judg-
ment is invariant under adding irrelevant variables to the typing con-
text. The analogous property for tactic scripts is that proofs should
work when hypotheses are added. In practice, this change arises
when a lemma is discovered to be unprovable, and an additional
hypothesis must be added to make the lemma true. If the partially
developed proof has the weakening property, then it will still work
when the additional hypothesis is added. The developer can then
proceed to leverage the new hypothesis to complete the proof.

17 The third standard structural property, contraction, corresponds to
removing redundant hypotheses from the context. Although avoiding
hypothesis names does make our proofs robust against this change, we have
not encountered a need to support it in practice.

Exchange A type system satisfies exchange if the typing judg-
ment is invariant under permutations of variables bound in the
typing context. The analogous property for tactic scripts is that
proofs should work when hypotheses are reordered. In practice, this
change arises when an Ltac match statement that used to select one
hypothesis now selects a different one. This occurs when the match
pattern is ambiguous and the hypotheses have been reordered, since
ambiguity is resolved by Ltac using hypothesis ordering. To combat
this problem, we strive to make our match patterns specific enough
that they match only a single hypothesis in the context. While this
rule of thumb is not always sufficient (e.g., adding a new hypothesis
that matches a previously unambiguous pattern), we have found it
to work well in practice.

7.2 Separating Theorems from Proofs

Our proof of Raft’s safety consists of 90 invariants, whose proofs
may depend on other invariants. In Coq, modifying a proof P causes
all other proofs that depend on P to be rechecked, and in a large
development, this has a significant cost in terms of developer time.
We address this by separating theorems from their proofs, analogous
to the way interfaces are separated from implementations in soft-
ware engineering. Theorem statements are placed in an interface,
and their proofs are expressed as an implementation of the interface.
When the proof of one theorem depends on another, the downstream
proof imports the interface of the upstream theorem. Note this
is different from other developments which may use modules to
separate major system components into distinct namespaces, but
typically include the proofs in the interface. Thus if one component
changes, all dependent components must be rechecked even if they
did not require any changes for their proofs to continue to work.

Recommendation 5. Separate theorem statements from their
proofs using interfaces.

This approach cuts all dependencies between proofs, which
allows proof checking to proceed completely in parallel after the
interfaces have been typechecked. Since the proofs themselves take
much longer to execute and check than the interfaces, this leads
to radically faster build times (in our Raft development, this made
rechecking proofs after edits over 100× faster). Furthermore, edit-
ing a proof no longer requires re-checking other proofs that depend
on it, as long as the interface is not modified. With this approach,
one has to rebuild less frequently, and rebuilds take less time.18

For example, consider a lemma P that is used to prove a top-level
theorem Q. To support editing the proof of P without rechecking the
proof of Q, create an interface (using Coq’s type class mechanism)
containing the statement of P.

(* File: PInterface.v *)
Class P_interface := { P_is_true : P }.

To export a proof of P, provide an implementation of the interface
(i.e., an instance of the type class).

(* File: PProof.v *)
Lemma P_proof : P.
Proof. (* ... *) Qed.

Instance P_implementation : P_interface.
Proof. constructor. apply P_proof. Qed.

To use P to prove the top-level theorem Q, assume an arbitrary
instance of P_interface.

18 Coq 8.5 also has a feature that separates theorem statements from their
proofs, using .vio interface files [2]. We expect to use this feature when
it becomes stable.

(* File: Q.v *)
Context {Pi : P_interface}.
Lemma Q_proof : Q.
Proof. assert P by apply P_is_true. (* ... *) Qed.

Finally, to check Q end-to-end, plug the concrete instance of the
proof of P into the proof of Q.

(* QEndToEnd.v *)
Theorem Q_end_to_end : Q.
Proof. apply (@Q_proof P_implementation). Qed.
About Q_end_to_end. (* No dependence on P_interface. *)

During proof development, the proof of P can be edited indepen-
dently of the proof of Q. In particular, a change to the proof of P
does not force a developer working on the proof of Q to rebuild the
entire codebase. The final end-to-end check ensures that no circular
dependencies exist among the interfaces. This check is important,
but rarely fails, and so developers need not check it during normal
proof development. We have found it useful to set up a continuous
integration server to check the end-to-end condition whenever a
change is committed.

In our proof of Raft, each invariant is stated in a separate inter-
face, which is implemented by the proof of the invariant. To resolve
dependencies between proofs, we have a single end-to-end file that
imports all theorems and all proofs and connects them appropriately.
Resolving all the dependencies with a single call to the auto tactic
takes around two minutes. Using interfaces allowed us to build the
full end-to-end proof only infrequently while doing development,
relying on the continuous integration server to catch any circular
reasoning.

8. Experience
We developed the methodology described in the preceding sec-
tions over a period of roughly 18 months. Before we applied our
recommendations, we found that managing the complexity of the
verification process led to slow progress, as we spent the majority
of our time reworking proofs in response to changes. In contrast,
once all of the techniques in our methodology were developed and
applied throughout our codebase, we found that rework in response
to common changes was significantly reduced. This allowed us to
successfully complete our verification of Raft.

We now describe an example of a change we made to Raft after
our initial verification effort was complete, and discuss how our
methodology insulated most parts of the system from rework in
response to this change. In an early version of our Raft implemen-
tation, client responses had unnecessarily high latency because the
leader replied to clients before updating the relevant metadata. Thus
responses that could be sent now were instead sent when the next
event was processed, leading to what clients would observe as a
performance bug. After obtaining a complete proof of linearizability,
we changed our implementation to send client responses as soon
as possible. More concretely, we changed Raft’s top-level event
handler to call the function that is responsible for marking a request
complete before calling the function that sends client responses; this
change is illustrated in pseudocode in Figure 9. After making this
change, we proceeded to fix the proof of linearizability.

(* before *) (* after *)
handleMessage m := handleMessage m :=
match m with ... match m with ...
executeEntries(); leaderHeartbeat();
leaderHeartbeat() executeEntries()

Figure 9. Pseudocode for the simple change made to our Raft
implementation

The decomposition lemma discussed in Section 5 insulates
invariants from this reordering. To prove an invariant using the
decomposition, one proves that every low-level event and each of
the above helper functions preserves the invariant. Crucially, each
of these proofs is independent and does not depend on the exact
ordering of functions in the top-level event handler. Thus only the
proof that the decomposition is itself sound needs to be updated, and
this change is relatively straightforward and localized to a single file.

The decomposition only applies to internal invariants, i.e., invari-
ants on Raft’s internal state. Invariants about the trace of externally
visible events are instead proved using the trace relation technique
discussed in Section 5.2. Unfortunately, the requirements of trace re-
lations do not force the proof to be order independent, so each proof
needed to be updated individually. There are around 85 internal
invariants and 5 external invariants in our development. Updating
the decomposition (and thus fixing the 85 internal invariants all at
once) required about 3 hours. Fixing the 5 external invariants re-
quired about the same amount of time, despite being about an order
of magnitude fewer lines of code. A variant of trace relations that
incorporates the order-independence of the decomposition would
have made these external invariants just as easy to update.

Our experience fixing this performance bug gives anecdotal
evidence that our approach pays off in the long run. This example is
admittedly somewhat of a best case, since the change fits so nicely
into the strengths of the decomposition. On the other hand, we were
eager to make this change in part because we knew the proofs would
be relatively easy to update.

9. Related Work
Our verification of Raft builds on work in distributed systems ver-
ification (Section 9.1), systems verification in general (Section 9.2),
and proof engineering (Section 9.3). We briefly survey the most
closely related work below.

9.1 Distributed Systems Verification

We discuss several previous projects verifying distributed systems
in previous work [39]. Here we briefly describe two of the most
closely related projects: EventML/ShadowDB and IronFleet.

EventML [35, 36] is a language for implementing distributed
systems. EventML programs can be verified in NuPRL [8] using
the Logic of Events [4]. EventML and the Logic of Events have
been used to verify an implementation of Multi-Paxos, a total-order
broadcast service, used as part of a distributed database [37].

IronFleet [16] is a concurrent effort to build and verify dis-
tributed systems using Dafny (an SMT-based program verification
toolchain) and a TLA-style proof strategy. This approach enables
building practical distributed systems and proving both safety and,
unlike our Raft proof in Verdi, liveness properties. Also unlike
our Raft implementation in Verdi, IronFleet’s implementation of
Paxos supports many important practical features including verified
marshaling and parsing, state transfer, and log truncation. Compared
to IronFleet, Verdi’s verified system transformers provide a more
compositional approach to building fault tolerant systems.

9.2 Systems Verification

The research community has applied proof assistants to verify im-
plementations of several major systems. CompCert is a verified C
compiler written in Coq [24]. To establish equivalence between an
input C program and the corresponding output assembly, Compcert
proves a bisimulation between the two programs. However, instead
of proving a forward simulation and backward simulation for every
transformation, CompCert instead uses deterministic intermediate
languages, proves only a forward simulation for each transformation,
and applies to a general, higher-order result which shows that any
forward simulation into a deterministic semantics implies a bisim-

ulation. This decomposition inspired some of our design choices
which eventually developed into our recommendations for adapting
to change.

Bedrock [6], Ynot [27], and the Verified Software Toolchain [1]
are verification frameworks based on separation logic and are useful
for verifying imperative programs in Coq. The Verified Software
Toolchain uses opaque definitions to hide information in a way
similar to our recommendations, but does so for reasons of automa-
tion rather than proof maintainability. By exposing only a small
set of axioms (for instance, those of separation logic), the Verified
Software Toolchain enables automated proofs for a large set of
proof obligations, without the proof search getting bogged down
reasoning about every definition in the system.

seL4 is an OS kernel, verified using the Isabelle/HOL proof
assistant [19]. As in our verification of Raft, the bulk of the effort in
verifying seL4 was in proving invariants about the internal state of
the system. These invariants are then used to prove that the C code
implements the abstract specification.

9.3 Proof Engineering

There is a small body of work on improving the development of
machine-checked proofs. We believe that this branch of software
engineering is becoming increasingly important, and look forward
to more research in this area. In particular, how best to develop
proofs which are robust in the face of changes to related definitions
is an open question.

Our interface lemmas, described in Section 5 are analogous to
the use of modules and Abstract Data Types (ADTs) in classical
software engineering [33]. Just as an interface to an ADT hides
implementation details from the client so too does this unfolding
methodology hide implementation details from other proofs (ver-
ified clients). In the classic ADT setting, operations are exposed as
part of the interface. In the verified setting, the interface also needs
to make explicit the specifications of its operations. The definitions
of the operations are then only unfolded in the proofs showing that
the operations satisfy their specifications.

In their verification of seL4, Klein et al. identify this core
challenge and describe four categories of changes, ordered by
their relative verification cost: (C1) local, low-level code changes;
(C2) adding new, independent features; (C3) adding new, large,
cross-cutting features; (C4) fundamental changes to existing fea-
tures [19, 20]. In particular, they note that categories C3 and C4 have
a disproportionately high cost of re-verification. In this terminology,
the goal of our methodology is to structure the development such
that common changes are in categories C1 or C2, rather than C3 or
C4, thus significantly reducing re-verification costs.

The proof engineering techniques presented in this paper repre-
sent a particular point in the design space: extensive higher-order
reasoning combined with a modular proof architecture and tactics fo-
cused on lightweight automation and robustness to change. Chlipala
advocates for heavy proof automation, using powerful, purpose-built
tactics to dispatch proof obligations [7]. Gonthier and others have ad-
vocated for using canonical structures to extend Coq’s built-in type-
checker to support automation [14]. We see our approach as a com-
promise between the “tactic soup” style of many proofs, which pays
no attention to maintainability or automation, and Chlipala’s heavy
automation, which requires heavy up front investment in tactics.

The Ssreflect library [13] provides an alternative to Coq’s default
tactic language. Many of Ssreflect’s tactics involve “bookkeeping”,
that is, managing the hypotheses which appear in the goal and in
the context. Ssreflect disallows the use of automatically generated
hypothesis names, requiring users to explicitly assign names to
hypotheses. In contrast, using our methodology, one avoids referring
to specific hypotheses at all by using tactics which find the correct
hypothesis wherever it is in the context.

10. Conclusion
We presented the first formally verified implementation of the Raft
consensus protocol. Our proof establishes Raft’s primary safety
property, namely that it is a linearizable replicated state machine.
Based on our experience, we developed a proof engineering method-
ology of planning for change. Our methodology adapts classical
information hiding techniques to the context of proof assistants,
factors out common invariant strengthening patterns into custom
induction principles, proves higher-order lemmas that show any
property proved about a particular component imply analogous
properties about related components, and makes proofs robust to
change using structural tactics. We believe these techniques are
generally applicable, and we hope to see more discussion of proof
methodology and engineering techniques in the community.

Acknowledgments
The authors thank Adam Chlipala, Nate Foster, Gregory Malecha,
Diego Ongaro, Karl Palmskog, Bryan Parno, Benjamin Pierce,
Vincent Rahli, Daniel T. Ricketts, Ilya Sergey, Xi Wang, Daryl
Zuniga, and the anonymous reviewers for helpful feedback on
earlier versions of this work.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-0963754 and the Graduate
Research Fellowship Program under Grant No. DGE-1256082. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This material
is based on research sponsored by the United States Air Force under
Contract No. FA8750-12-C-0174 and by DARPA under agreement
number FA8750-12-2-0107. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

References
[1] A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart,

S. Blazy, and X. Leroy. Program Logics for Certified Compilers.
Cambridge University Press, 2014.

[2] B. Barras, C. Tankink, and E. Tassi. Asynchronous processing of Coq
documents: from the kernel up to the user interface. In ITP, 2015.

[3] J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! - A framework
for higher-order separation logic in coq. In ITP, 2012.

[4] M. Bickford, R. L. Constable, and V. Rahli. Logic of events, a
framework to reason about distributed systems. In LADA, 2012.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In PODC, Aug. 2007.

[6] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI, June 2011.

[7] A. Chlipala. Certified Programming with Dependent Types. MIT Press,
Dec. 2013.

[8] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat-
ics with The Nuprl Proof Development System. Prentice Hall, 1986.

[9] Coq Development Team. The Coq Reference Manual, version 8.4,
Aug. 2012. http://coq.inria.fr/doc.

[10] Data Center Knowledge. etcd: the Not-so-Secret Sauce in
Google’s Kubernetes and Pivotal’s Cloud Foundry, 2014.
http://www.datacenterknowledge.com/archives/2014/07/16/etcd-

secret-sauce-googles-kubernetes-pivotals-cloud-foundry/.
[11] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of

distributed consensus with one faulty process. J. ACM, 32(2), 1985.
[12] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging

mathematical structures. In TPHOLs, 2009.

[13] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection
Extension for the Coq System. Technical Report 645, Microsoft
Research - Inria Joint Centre, 2009.

[14] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make
ad hoc proof automation less ad hoc. In ICFP, 2011.

[15] Greg Morrisett. Certified Programming and State, June 2014.
https://www.cs.uoregon.edu/research/summerschool/summer14/

curriculum.html.

[16] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. Ironfleet: Proving practical distributed
systems correct. In SOSP, Oct. 2015.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. TOPLAS, 12(3), 1990.

[18] J. Kirsch and Y. Amir. Paxos for system builders. Dept. of CS, Johns
Hopkins University, Tech. Rep, 2008.

[19] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In SOSP, Oct. 2009.

[20] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verification of an
OS microkernel. ACM Trans. Comput. Syst., 32(1), 2014.

[21] L. Lamport. The part-time parliament. TOCS, 16(2), 1998.

[22] L. Lamport. Paxos made simple. ACM Sigact News, 32(4), 2001.

[23] B. W. Lampson. The ABCD’s of Paxos. In PODC, Aug. 2001.

[24] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7), July 2009.

[25] G. Malecha. coq-ext-lib. https://github.com/coq-ext-lib/coq-ext-
lib.

[26] D. Mazieres. Paxos made practical, 2007. http://www.scs.stanford.
edu/~dm/home/papers.

[27] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In ICFP, Sept. 2008.

[28] NYTimes. The Stock Market Bell Rings, Computers Fail, Wall Street
Cringes, July 2015. http://www.nytimes.com/2015/07/09/business/
dealbook/new-york-stock-exchange-suspends-trading.html.

[29] B. M. Oki and B. H. Liskov. Viewstamped replication: A new primary
copy method to support highly-available distributed systems. In PODC,
Aug. 1988.

[30] D. Ongaro. Consensus: Bridging Theory and Practice. PhD thesis,
Stanford University, Aug. 2014.

[31] D. Ongaro. The Raft consensus website, Nov. 2014.
http://raft.github.io/.

[32] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX ATC, June 2014.

[33] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12), Dec. 1972.

[34] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[35] V. Rahli. Interfacing with proof assistants for domain specific
programming using EventML. In UITP, July 2012.

[36] V. Rahli, D. Guaspari, M. Bickford, and R. L. Constable. Formal
specification, verification, and implementation of fault-tolerant systems
using EventML. In AVOCS, Sept. 2015.

[37] N. Schiper, V. Rahli, R. van Renesse, M. Bickford, and R. L. Constable.
Developing correctly replicated databases using formal tools. In DSN,
June 2014.

[38] R. Van Renesse. Paxos made moderately complex. ACM Computing
Surveys, 47(3), 2011.

[39] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D.
Ernst, and T. Anderson. Verdi: A framework for implementing and
verifying distributed systems. In PLDI 2015, June 2015.

http://coq.inria.fr/doc
http://www.datacenterknowledge.com/archives/2014/07/16/etcd-secret-sauce-googles-kubernetes-pivotals-cloud-foundry/
http://www.datacenterknowledge.com/archives/2014/07/16/etcd-secret-sauce-googles-kubernetes-pivotals-cloud-foundry/
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html
https://github.com/coq-ext-lib/coq-ext-lib
https://github.com/coq-ext-lib/coq-ext-lib
http://www.scs.stanford.edu/~dm/home/papers
http://www.scs.stanford.edu/~dm/home/papers
http://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
http://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
http://raft.github.io/

	Introduction
	Verdi Background
	Implementation and Verification of Raft
	Raft
	Raft Implementation using the Verdi Framework
	Raft Proof

	Information Hiding
	Custom Induction Principles
	Intermediate Reachability
	Trace Relations

	Affinity Lemmas
	Representation Invariants on Logs
	Message Symmetry

	Proof Engineering
	Tactics for Robust Development
	Separating Theorems from Proofs

	Experience
	Related Work
	Distributed Systems Verification
	Systems Verification
	Proof Engineering

	Conclusion

