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Data overwhelms computation and storage
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computation, storagecompute time

data

interactive analysis mobile devices

reanalyze all data

batch analysis datacenter

analyze a sample

adapt to adversity

approximate to get interactivity
adapt to opportunity

exploit fast imperfect hw, sw



file 
systems

adapt apps to 
relaxed file systems;

adapt file systems to
new disks

caches adapt analytics to 
relaxed hardware 

Whole-stack approach
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analytics layout renderingstreaming data database

adapt computation: parallelize, incrementalize, approximate



Adaptation to adversity (reduce degradation)

When not keeping up, approximate!

Multi-resolution storage:
level of detail vs. read bandwidth 

Multi-resolution visualization:
hide detail during interactive exploration
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Adapting to opportunity (elevate performance)

Performance gains will come with strings attached.

Memory: denser but lossy.

Disks: high-capacity but append-only.

Processors: relaxed but non-intuitive.

File systems: fast but not crash resilient.

Parallelism: massive but restrictive.

Exploiting these imperfect systems will require 
adaptation of algorithms, software, interfaces. 
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New platforms adapt to new hardware

analytics layout renderingstreaming data database

cachesfile system



CASPER adapts SW to new platforms

Idea: use verified lifting to infer high-level summary from existing code

Re-target inferred summary to parallel processing frameworks (Hadoop)

behavioral 
specification 
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Specification language
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[Maaz Bin Safeer Ahmad, Alvin Cheung. SYNT 2016. Best Paper]



MemSynth: Synthesis of Memory Models
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Automatic inference + synthesis with Rosette
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Selected recent papers
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2. Crash 
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storage
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1: Adapt to workload and parallelize.

CP1 and CP2

12

analytics layout renderingstreaming 
data database



CP1: Adaptive Data Visualization
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Dataset and visualization

Dataset candidate: network attack analysis

14
Mansmann et al, Visual Support for Analyzing Network Traffic and Intrusion Detection Events using 
TreeMap and Graph Representations



Treemap of Financial Industry (NY Times)
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http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html`

dataset transform

slider

transform data vis tree layout pixels

p=Dec 2007

http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html
http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html


Treemap of a democratic election

http://superconductor.github.io/superconductor      video

JavaScript: 
500 polling stations @ 25fps

SuperConductor (GPU): 
95k polling stations @ 25fps

http://superconductor.github.io/superconductor
https://www.youtube.com/watch?v=H1aHul6UaV4&t=140
http://superconductor.github.io/superconductor


Perturbation and Adaptation

Perturbation: the “slider” generates exceedingly many 
requests to redo analysis and visualization

Adaptation: 
(1) drop requests
(2) approximate
(3) parallelize

Goal: Maintain desired slider frame rate (30ms), while 
keeping approximation error low.



DAS

Lincoln test harness

layout engine

data tree

pixelssynthesisvisualization spec
deploy

intent: desired framerate
set the frame rate r

controller
overflow?

lower the resolution

shared file system

tim
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Implementation in more detail
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dataset transform1

slider

transform2 data vis tree layout pixels

p=Dec 2007

Logical view:

country

regions

polling stations
(actual data)

HBox

HBox

Leaf

VBox

VBox

Implementation:

dataset transform2 data vis tree layout pixels

slider



Computing the treemap layout

Treemap constraints: 
▪ votes == c * width * height
▪ compute c to fill the whole canvas 
▪ rectangles must be tightly packed

Layout constraints can be solved
but an attribute grammar is 100x faster

3-pass evaluation of the grammar:
1) top-down: pass p to leaves

at leaves, transform the data
2) bottom-up: some up votes

at root, compute the constant c
3) top-down: divide the canvas, compute x,y,w,h



Synthesis of grammar evaluation schedule

post {
  Root:Top { }
  HBox:HVBox { ..., self.width, self.height } ;;
  VBox:HVBox { ..., self.width, self.height }
  Leaf:HVBox { self.width, self.height }
}
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Definition of the schedule DSL
(an interpreter)

Layout constraints
(attribute grammar)

pre {
  Root:Top { root.right, root.bottom }
  HBox:HVBox { [childs.right, childs.bottom] }
  VBox:HVBox { [childs.right, childs.bottom] }
  Leaf:HVBox { }
} 

Grammar evaluator
(schedule DSL program)

See Nate Yazdani’s poster on scalable synthesis of grammar evaluators



Adaptive evaluation

Lower-resolution visualization 
by summarizing subtrees. 

Restore detail after the slider 
stops.

For this we need: more expressive schedule language primitives, 
eg 

“traverse just a subtree” rather than “traverse entire tree”

currently working on these data-dependent parallel trasversals



2. Crash 
consistency 
in relaxed FS.

storage

file system

1: Adapt to workload and parallelize.

CP1 and CP2
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Changes & adaptations in the storage stack

Application

File System

Adapt app to
FS changes

Adapt FS to
HW changes



Progress update

This phase: adapt applications to FS changes
– Main result: crash consistency model [ASPLOS’16]

– Formally define what POSIX file systems guarantee

– A basis for building & adapting crash-safe applications

Next: adapt FS to hardware changes
– Highly automated push-button verification

– Yxv6: a verified journaling file system

– A basis for FS adaptations

25



Adaptation via automated formal verification

Step 1:
Automated
verification

Step 2:
Propose an 
adaptation



Adapt applications to FS changes

• The POSIX interface
– open, close, read, write, rename, …

– largely silent on crash guarantees

• Many FS implementations
– ext4, btrfs, f2fs, ufs2, …

– different semantics: performance vs. persistence

• Problem: hard to adapt applications to a new FS

• Idea: crash consistency models

27

Application

File System



An overview of adaptation

Library requirements
– Correctness: insert sync if needed

– Performance: minimize sync

28

Application

FS
0

Library
0

Application

FS
1

Library
1

Change

Adapt



Replacing the contents of a file
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foo.txtfoo.txtfoo.txt        
The best of times
The worst of times

The age of wisdom
The epoch of belief



Atomic replace via rename
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foo.tmpfoo.txtfoo.txt        f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom
The epoch of belief



Atomic replace via rename

create(“foo.tmp”)

write(f, “The age of …”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

File operations Writes

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)



Atomic replace via rename
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create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt        
The best of times
The worst of times

Crash!



Crash-consistency models
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Litmus tests Formal specifications

Small programs that demonstrate 
allowed or forbidden behaviors of a 
file system across crashes

Axiomatic descriptions of crash 
consistency using first order logic

Documentation for application 
developers

Automated reasoning about crash 
safety



Litmus tests

• Small programs that demonstrate allowed or forbidden 
behaviors of a file system across crashes

Prefix append

ext4 Unsafe

xfs Safe

f2fs Unsafe

nilfs2 Safe

btrfs Safe

ufs2 Unsafe

File system

We suspect that most modern 
filesystems exhibit the safe 
append property.

SQLite Atomic Commit documentation



ext4 crash consistency

• ext4 allows traces that 
respect ordering of:

– Same-file metadata

– Same-block writes

– Same-dir operations

– Write-append pairs
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Building models with Ferrite

36

Litmus tests

File System 
(via QEMU)Ferrite

System calls

Disk commands
Correlate system 
calls and disk 
commands; 
generate possible 
crash outcomes



Adapting crash consistency
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f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)



Adapting crash consistency
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fsync(f)
f = create(“file.tmp”)
fsync(f)
write(f, new)
fsync(f)
close(f)
fsync(f)
rename(“file.tmp”, “file”)
fsync(f)



Adapting crash consistency
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f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

content(“file”) == old
|| content(“file”) == new

Program
Crash-consistency 
model

              Synthesizer

Spec

Crash-safe program



Summary of adapting apps to FS changes

• Hard for developers to understand FS guarantees

• Crash consistency models
– A formal specification of crash consistency

– Much like a memory model

• Ferrite: support for discovering crash consistency of a 
file system

• Synthesis to adapt apps to new crash consistency
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Test integration
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Intent: desired FS model control

engine

Lincoln test harness

set desired FS model start/stop adaptation

synthesisspec

new libraryold library

load



Future work: adapting FS to HW changes

• Step 1: FS verification

• Step 2: FS adaptation

42

File System



Challenges in FS verification

• Complex on-disk data structures
– Disk can reorder writes due to caching

– Programs can crash at any point

• State of the art
– Model checking: eXplode [OSDI’06]

– Manual proofs: FSCQ [SOSP’15], Cogent [ASPLOS’16]
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Idea: push-button verification for FS

• Co-design a file system with verification

• Goal: no proofs
– Programmers write spec, impl, fsck invariants

– No loop invariants nor annotations on code

• Fully automated SMT reasoning
– Can be considered as exhaustive symbolic execution

– Achieve scalability by layered composition

– Get rid of unbounded loops via translation validation



Current results

• Yxv6: a verified journaling file system
– Similar to xv6 FS/FSCQ/ext3

– Written in Python/Z3

– compiled to C for execution

• Push-button verification for Yxv6
– ~300 LOC spec & ~3,000 LOC impl.

– Little proof burden: 5 fsck invariants

– No low-level bugs & all paths exhausted

– Functional correctness & crash safety



Looking forward: FS adaptations

• Verification provides a basis for adaptation

• A simple example: minimize disk flushes
– Try to remove every flush & re-verify

– Adapt to battery-backed disks

• Future disks with non-traditional API
– SCSI upcoming standard for atomic scattered writes

– Shingled magnetic recording, persistent memory
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Summary of CP2

• Adapt applications for file system changes
– File system crash consistency models & tools

– Application adaptation

• Future work
– Adapt FS to HW changes

– Push-button verification: a basis for FS adaptation
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