SANDCAT

Adaptive Visualization of Big Data
University of Washington

sandcat.cs.washington.edu

Dan Zach Emina Xi
Grossman Tatlock Torlak Wang



Data overwhelms computation and storage

analyze a sample

—reanatyze-at-data——
AN

: Q

(\ & . q.
0 20V ers :Jac\\\l\w data L X0/ ,77;0’ fo
\! Lne asy ;. P,

adap o t pOrt
oS 0 ,77,06 u’)i[
o)
) SW
compute time computation, storage

. . s bite dowi

batch analysis datacenter



Whole-stack approach

adapt computation: parallelize, incrementalize, approximate

T T =aA

database —— analytics —  layout
adapt apps to file

relaxed file systems; systems _

adapt analytics to
adapt file systems to 5 g g n -

relaxed hardware
new disks

streaming data —»

rendering



Adaptation to adversity (reduce degradation)

When not keeping up, approximate!

Multi-resolution storage:
level of detail vs. read bandwidth

Multi-resolution visualization:
hide detail during interactive exploration



Adapting to opportunity (elevate performance)

Performance gains will come with strings attached.

Memory: denser but lossy.

Disks: high-capacity but append-only.
Processors: relaxed but non-intuitive.
File systems: fast but not crash resilient.
Parallelism: massive but restrictive.

Exploiting these imperfect systems will require
adaptation of algorithms, software, interfaces.



New platforms adapt to new hardware

| | = A
streaming data — database —— analytics —

layout

rendering

file system _
EEE MM

memsgql

Graphlab

Spar‘l’(\Z




CASPER adapts SW to new platforms

Idea: use verified lifting to infer high-level summary from existing code

Re-target inferred summary to parallel processing frameworks (Hadoop)

behavioral L
specification Specification langquage
Q out = reduce(f , map(f , in))
@ ) 03
S 23 |
S % f (e) { k=E; v=E; emit(k,v); }
& %
$

E:=e.f| N| EopE | f(E) | ...

Similarly for £

[Maaz Bin Safeer Ahmad, Alvin Cheung. SYNT 2016. Best Paper]



MemSynth: Synthesis of Memory Models

Sandcat

x86 ARM PPC ... | GPU

[CAV'08]  [TOPLAS] [CAV'1(] [ASPLOS’15]
[POPL09] [POPL16] [PLDI'11]
[CACM’1(] [CAV'12]

Example 8-3. Loads May be Reordered with Older Stores

Results: PowerPC

768 litmus tests

603 forbidden Synthesized

by existing model existing model
in 6 minutes

1 65 allowed (+ (N (<: Writes (+ (> (+ (join (join (:> po Syncs) po) rf) (<:
L Writes rf)) (join (+ Writes Reads) (join (join (:> po Syncs)
by existing po) ) (> (+ (<: Writes (join (> po Syncs) po) (join rf
m Od e| (join (:> po Syncs) po)) (+ Writes Reads))))) (M (<: (+ (> (+
Reads (join (& (+ (-> Reads MemoryEvent) (-> Writes
Writes)) (join (:> po Lwsyncs) po)) Reads)) (> (join Reads
rf) Reads)) (join (<: (+ Writes Reads) (& (+ (-> Reads
MemoryEvent) (-> Writes Writes)) (join (> po Lwsyncs)
p0))) (+ Writes Reads))) (> (+ (join (join (& (+ (-> Reads
MemoryEvent) (-> Writes Writes)) (join (:> po Lwsyncs)
po)) rf) (> (& (+ (> Reads MemoryEvent) (-> Writes
Writes)) (join (:> po Lwsyncs) po)) Writes)) (+ (& (+ (->
Reads MemoryEvent) (-> Writes Writes)) (join (:> po
Lwsyncs) po)) (> rf Reads))) (join (+ Writes Reads) (+ (join
rf (& (+ (-> Reads MemoryEvent) (-> Writes Writes)) (join
(:> po Lwsyncs) po))) (> (& (+ (-> Reads MemoryEvent)
(-> Writes Writes)) (join (:> po Lwsyncs) po)) Writes)))))))

Processor 0

Processor 1

mov [ _x], 1
mov r1,[ _v]

mov [ _v], 1
mov rZ, [ _x]

Initially x=y=0
rl=0andr2 =0 is allowed




m

al
Automatic inference + synthesis with Rosette
Sp
eci
o$ | human expert designs

[ the spec language

| Rosette performs
inference and synthesis

e
&
‘\Q e
J
¢ 5
ol | &
L = > | ol |E
original new S| el |2 g
implementation implementatio Bllgz| 8|5
n o 5| 2| |a
= o||>] M

29
o
v
m
-
-
[T

()




Selected recent papers

Leveraging Parallel Data Processing Verified Lifting of Stencil Computations.
Frameworks with Verified Lifting. Maaz Bin — Kamil Shoaib, Alvin Cheung, Shachar
Safeer Ahmad and Alvin Cheung. SYNT 2016. Iy, AiEee Sok-LeREmEL. 2 ol 2A5E

Optimizing Synthesis with Metasketches.
James Bornholt, Emina Torlak, Dan
Grossman, and Luis Ceze. POPL 2016.

y ﬁl

streaming data — database —— analytics —— layout —— rendering

file system Fast Synthesis of Fast Collections.

j j : . Calvin Loncaric, Emina Torlak and

Michael D. Ernst. PLDI 2016.

Specifying and Checking File System
Crash-Consistency Models, James Bornholt,

Antoine Kaufmann, Jialin Li, Arvind High-Density Image Storage Using
Krishnamurthy, Emina Torlak, and Xi Approximate Memory Cells, Qing Guo,
Wang. ASPLOS 2016. Karin Strauss, Luis Ceze, Henrique

Malvar. ASPLOS 2016.

Staccato: A Bug-Finder for Dynamic Configuration Updates, hecki .
John Toman and Dan Grossman. ECOOP 2016. checking repair 10



http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/cozy.pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Cheung-Shoaib-pldi-2016.pdf
http://sandcat.cs.washington.edu/web/papers/synapse-popl16.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf

10.

Sand Cat publications (Jan - July 2016)

Packet Transactions: High-level Programming for Line-Rate
Switches. Anirudh Sivaraman, Mihai Budiu, Alvin Cheung,
Changhoon Kim, Steve Licking, George Varghese, Hari Balakrishnan,
Mohammad Alizadeh and Nick McKeown. SIGCOMM 2016.

Formal Semantics and Automated Verification for the Border
Gateway Protocol. Konstantin Weitz, Doug Woos, Emina Torlak,
Michael D. Ernst, Arvind Krishnamurthy and Zachary Tatlock. NetPL
2016.

Staccato: A Bug-Finder for Dynamic Configuration Updates.
John Toman and Dan Grossman. ECOOP 2016.

Automatic Generation of Oracles for Exceptional Behaviors.
Michael D. Ernst, Alberto Goffi, Alessandra Gorla and Mauro

Pezzé. ISSTA 2016.

Leveraging Parallel Data Processing Frameworks with Verified
Lifting. Maaz Bin Safeer Ahmad and Alvin Cheung. SYNT 2016.

Computer-Assisted Query Formulation. Alvin Cheung and Armando
Solar-Lezama. Foundations and Trends in Programming Languages,
Vol.3 No.3.

Compiling a Gesture Recognition Application for a Low-Power
Spatial Architecture. Phitchaya Mangpo Phothilimthana, Michael
Schuldt, and Rastislav Bodik. LCTES 2016.

Fast Synthesis of Fast Collections. Calvin Loncaric, Emina Torlak and
Michael D. Ernst. PLDI 2016.

Verified Lifting of Stencil Computations. Kamil Shoaib, Alvin
Cheung, Shachar Itzhaky, Armando Solar-Lezama. PLDI 2016.

Verified Peephole Optimizations for CompCert. Eric Mullen, Daryl
Zuniga, Zachary Tatlock and Dan Grossman. PLDI 2016.

11.

12.

13.

14.

15.

16.

17.

18.

Semantics for Locking Specifications. Michael D. Ernst, Damiano
Macedonio, Massimo Merro and Fausto Spoto. NFM 2016.

Locking discipline inference and checking. Michael D. Ernst, Alberto
Lovato, Damiano Macedonio, Fausto Spoto, and Javier Thaine. ICSE

2016.

High-Density Image Storage Using Approximate Memory Cells.
Qing Guo, Karin Strauss, Luis Ceze, Henrique Malvar. ASPLOS 2016.

Specifying and Checking File System Crash-Consistency Models.
James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,

Emina Torlak, and Xi Wang. ASPLOS 2016.

Programming with models: writing statistical algorithms for general
model structures with NIMBLE. Perry de Valpine, Daniel Turek,

Christopher ). Paciorek, Clifford Anderson-Bergman, Duncan Temple
Lang, and Rastislav Bodik. Journal of Computational and Graphical
Statistics.

Debugging distributed systems: Challenges and options for
validation and debugging. Ivan Beschastnikh, Patty Wang, Yuriy

Brun, and Michael D. Ernst. ACM Queue March-April 2016.

Planning for Change in a Formal Verification of the Raft Consensus
Protocol. Doug Woos, James R. Wilcox, Steve Anton, Zachary

Tatlock, Michael D. Ernst, and Thomas Anderson. CPP 2016.

Optimizing Synthesis with Metasketches. James Bornholt, Emina
Torlak, Dan Grossman, and Luis Ceze. POPL 2016.

11


http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-issta-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-issta-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://www.nowpublishers.com/article/Details/PGL-018
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/cozy.pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/Cheung-Shoaib-pldi-2016.pdf
http://sandcat.cs.washington.edu/web/papers/peek-mullen-pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/locking-semantics-nfm2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-icse-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/synapse-popl16.pdf

CP1 and CP2

1: Adapt to workload and parallelize.
( .
S rearglar;g —> database — analytics —> layout —> rendering

N e
e T on

file system

2. Crash
consistency
in relaxed FS. .



CP1: Adaptive Data Visualization

13



Dataset and visualization

Dataset candidate: network attack analysis

Create Screenshot

61.164.112.7

10 5.0

149 Nodes, 149 Splines, 1 Hosts

Colormap

HS3 SW (Linear) [ ]
Treemap Algorithm

Squarified B

Map to Color

flowcounter ﬂ
Map to Size
- equal weight - 77
o—
Spline Alpha Value
,—O—
™ 61.164.112.7
¥ @ 134.0.00/8 ’ m‘
T 134.34.1.0/24
> Gl 134.34.2.0/24
- 134 34 2 NI24A
(a) Identification of compromised hosts using threshold adjust- (b) Graph visualization showing communication flows
ment (red). between source (red) and destination hosts (blue).

Figure 4: Visualization interfaces of NFlowVis

Mansmann et al, Visual Support for Analyzing Network Traffic and Intrusion Detection Events using
TreeMap and Graph Representations

14



Treemap of Financial Industry (NY Times)

http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html’

slider

Citigroup

JPMorgan
Chase

Bank of
America

lp=Dec 2007

dataset —»

transform

Wells
Fargo

—>

transform

— data vis tree —

layout

— pixels

15


http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html
http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html

Treemap of a democratic election

JavaScript: SuperConductor (GPU):
500 polling stations @ 25fps 95k polling stations @ 25fps

http://superconductor.qgithub.io/superconductor



http://superconductor.github.io/superconductor
https://www.youtube.com/watch?v=H1aHul6UaV4&t=140
http://superconductor.github.io/superconductor

Perturbation and Adaptation

Perturbation: the “slider” generates exceedingly many
requests to redo analysis and visualization

Adaptation:
(1) dreprequests
(2) approximate
(3) parallelize

Goal: Maintain desired slider frame rate (30ms), while
keeping approximation error low.




DAS

=== e === =g

very r ms
set the frame rate r
» intent: desired framerate f--------------=-=----- > slider
overflow? y
controller | - === === === - - - - — - - -( requests C
:
|
|
|
eV /— — deploy T |
I , | visualization spec [ synthesis | -=-=--=-~- »| layout engine —» pixels - --
I I !
L T !
| |
o 1 lower the resolution |
5 | -~ ~ > data tree I
; ! 1
£ ! 3|
G ! 3
ol I 1
S| select visualization : load datasets | :
O 1 1 . 1 1
T | I start/stQp slider I !
ol I ! I !
w1 | |
| | ! | AA
1 1 1

Lincoln test harness

‘ shared file system \




Implementation in more detail

Logical view: | gjider

lp=Dec 2007

dataset — transform, = transform, — data vis tree — layout — pixels
Implementation: Slider
v
dataset > transform, — data vis tree — layout — pixels
country = ===-=======-—-—-—-—---- » HBox
VBox
regions - ---------- + HBox I
VBox

O

polling stations

(actual data)

19



Computing the treemap layout

Treemap constraints:
= votes == ¢ * width * height
= compute c to fill the whole canvas ,
Time to layout a

= rectangles must be tightly packed 1000-element doc
[ms]

. - 10
Layout constraints can be solved = 2310

but an attribute grammar is 100x faster Oﬁg =
1494

3-pass evaluation of the grammar: Eﬁ m
1) top-down: pass p to leaves
at leaves, transform the data
2) bottom-up: some up votes
at root, compute the constant ¢
3) top-down: divide the canvas, compute x,y,w,h

19385

1 10 100 1000 10000
BZ3 BGM




Synthesis of grammar evaluation schedule

Layout constraints Definition of the schedule DSL
(attribute grammar) (an interpreter)

RUSETTE
l

Grammar evaluator
(schedule DSL program)

post { pre {
Root:Top { } Root:Top { root.right, root.bottom }
HBox:HVBox { ..., self.width, self.height } ;; HBox:HVBox { [childs.right, childs.bottom] }
VBox:HVBox { ..., self.width, self.height } VBox:HVBox { [childs.right, childs.bottom] }
Leaf:HVBox { self.width, self.height } Leaf:HVBox { }

} }

See Nate Yazdani’'s poster on scalable synthesis of grammar evaluators .



Adaptive evaluation

Lower-resolution visualization
by summarizing subtrees.

Restore detail after the slider
stops.

For this we need: more expressive schedule language primitives,
€g

“traverse just a subtree” rather than “traverse entire tree”

currently working on these data-dependent parallel trasversals



CP1 and CP2

1: Adapt to workload and parallelize.
( .
S rearglar;g —> database — analytics —> layout —> rendering

N e
e T on

file system

2. Crash
consistency
in relaxed FS.
23



Changes & adaptations in the storage stack

Application

N
Adapt app to I
FS changes

Pz Adapt FS to
Y . HW changes

.~
= -
-
>

\ o




Progress update

This phase: adapt applications to FS changes
- Main result: crash consistency model [ASPLOS’16]
- Formally define what POSIX file systems guarantee
- A basis for building & adapting crash-safe applications

Next: adapt FS to hardware changes
- Highly automated push-button verification
- Yxvo6: a verified journaling file system
- A basis for FS adaptations

25



Adaptation via automated formal verification

Step 1: Step 2:

Automated Propose an
verification adaptation




Adapt applications to FS changes

The POSIX interface
Application
- open, close, read, write, rename, ...

- largely silent on crash guarantees I

Many FS implementations
- ext4, btrfs, f2fs, ufs2, ...

- different semantics: performance vs. persistence

.

L

L

Problem: hard to adapt applications to a new FS

L 2

Idea: crash consistency models

27



An overview of adaptation

Application Application

Library

Library requirements
- Correctness: insert sync if needed

- Performance: minimize sync



Replacing the contents of a file

foo.txt

The best of times
The worst of time

I\

foo.txt

The age of wisdom
The epoch of beli

I\

29



Atomic replace via rename

=P f = create(“foo.tmp”)
write(f, “The age of ...”7)

write(f, “The epoch of ...”)
close(f)

rename(“foo.tmp”, “foo.txt”)

foo.txt

The best of times
The worst of times

AN

foo.tmp

The age of wisdom
The epoch of belief

30



Atomic replace via rename

File operations

f = create(“foo.tmp”)
write(f, “The age of ...”7)
write(f, “The epoch of ...”)
close(f)

rename(“foo.tmp”, “foo.txt”)

Writes

create(“foo.tmp”)

write(f, “The age of ...”)

write(f, “The epoch of ...”)

rename(“foo.tmp”, “foo.txt”)




Atomic replace via rename

foo.txt foo.tmp

The best of times
The worst of times

* create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

Crash!

write(f, “The age of ...”)

write(f, “The epoch of ...”)




Crash-consistency models

Litmus tests

Small programs that demonstrate
allowed or forbidden behaviors of a
file system across crashes

Documentation for application
developers

Formal specifications

Axiomatic descriptions of crash
consistency using first order logic

Automated reasoning about crash
safety

33



Litmus tests

+ Small programs that demonstrate allowed or forbidden
behaviors of a file system across crashes

File system Prefix append

ext4 Unsafe
xts Safe We suspect that most modern
f9fs Unsafe filesystems exhibit the safe
append property.
nilfs?2 Safe SQLite Atomic Commit documentation
btrfs Safe

ufs2 Unsafe



ext4 crash consistency

. ext4 allows traces that
respect ordering of:
- Same-file metadata
- Same-block writes
- Same-dir operations
- Write-append pairs

Definition 7 (ext4 Crash-Consistency). Let tp be a valid
trace and 7p the corresponding canonical trace. We say that
tp is ext4 crash-consistent iff e; <,, e; for all events
€;,e; such that e; <., e; and at least one of the following
conditions holds:

1.

2

e; and e; are metadata updates to the same file: e; =
setattr(f, k;,v;) and e; = setattr(f,k;,v;).

e; and e; are writes to the same block in the same
file: e, = write(f,a;,d;), e; = write(f,a;,d;), and
sameBlock(a;,a;), where sameBlock is an implemen-
tation-specific predicate.

. ¢; and e; are updates to the same directory: args(e;) N

args(e;) # O, where args(link(iy,iz)) = {i1,42},
args(unlink(i,)) = {i1}, and args(rename(iy,is)) =

{i1,12}.

. e; is a write and e, is an extend to the same file: e; =

write(f,a;,d;) and e; = extend(f, a;,d;, s).

35



Building models with Ferrite

Litmus tests

L —

System calls

) File System
Ferrite (via QEMVU)

Correlate system
calls and disk
commands;
generate possible
crash outcomes




Adapting crash consistency

f = create(“file.tmp”)
write(f, new)

close(f)
rename(“file.tmp”, “file”)

37



Adapting crash consistency

fsync(f)

f = create(“file.tmp”)
fsync(f)

write(f, new)

fsync(f)

close(f)

fsync(f)
rename(“file.tmp”, “file”)
fsync(f)

38



Adapting crash consistency

f = create(“file.tmp”)
write(f, new)

close(T)
rename(“file.tmp”, “file”)

content(“file”) == old
|| content(“file”) == new

Program Spec Crash-consistency
; P model

synthesizer RUISETTE

Crash-safe program

39



Summary of adapting apps to FS changes

.

Hard for developers to understand FS guarantees

L

Crash consistency models
- A formal specification of crash consistency
- Much like a memory model

L

Ferrite: support for discovering crash consistency of a
file system

L

Synthesis to adapt apps to new crash consistency

40



Test integration

->[ Intent: desired FSmodel]- ------ *[ control ]

i [ spec ]—->[ synthesis ]— ------ »[ engine ]
i f l

[ old library ] [ new library ]
A

. |
set desired FS model start/stop adaptation I load

A |

-- -[ Lincoln test harness ]

41



Future work: adapting FS to HW changes

+ Step 1: FS verification

- Step 2: FS adaptation

. ~

s
L
-

|\

42



Challenges in FS verification

+ Complex on-disk data structures
- Disk can reorder writes due to caching
- Programs can crash at any point

+ State of the art
- Model checking: eXplode [OSDI’06]
- Manual proofs: FSCQ [SOSP’15], Cogent [ASPLOS’16]

43



Idea: push-button verification for FS

+ Co-design a file system with verification

+ Goal: no proofs
- Programmers write spec, impl, fsck invariants
- No loop invariants nor annotations on code

+ Fully automated SMT reasoning
- Can be considered as exhaustive symbolic execution
- Achieve scalability by layered composition
- Get rid of unbounded loops via translation validation



Current results

+ Yxv6: a verified journaling file system
- Similar to xv6 FS/FSCQ/ext3
- Written in Python/Z3
- compiled to C for execution

+ Push-button verification for Yxv6
- ~300 LOC spec & ~3,000 LOC impl.
— Little proof burden: 5 fsck invariants
- No low-level bugs & all paths exhausted
- Functional correctness & crash safety

" regular files, symbolic
| links, and directories

actional disk

block pointer

__________ CF_ o

p
transactional disk

write-ahead logging

__________ CF_ o

-

asynchronous disk

block device

\_\/‘)! \_\/‘/! \\/‘




Looking forward: FS adaptations

+ Verification provides a basis for adaptation

+ A simple example: minimize disk flushes
- Try to remove every flush & re-verify
- Adapt to battery-backed disks

+ Future disks with non-traditional API
- SCSI upcoming standard for atomic scattered writes
- Shingled magnetic recording, persistent memory

46



Summary of CP2

- Adapt applications for file system changes
- File system crash consistency models & tools
- Application adaptation

+ Future work
- Adapt FS to HW changes
- Push-button verification: a basis for FS adaptation

47



