
Adaptive Visualization of Big Data
University of Washington

sandcat.cs.washington.edu

1Ras
Bodik

Luis
Ceze

Alvin
Cheung

Mike Ernst Dan
Grossman

Zach
Tatlock

Emina
Torlak

Xi
Wang

Data overwhelms computation and storage

2

computation, storagecompute time

data

interactive analysis mobile devices

reanalyze all data

batch analysis datacenter

analyze a sample

adapt to adversity

approximate to get interactivity
adapt to opportunity

exploit fast imperfect hw, sw

file
systems

adapt apps to
relaxed file systems;

adapt file systems to
new disks

caches adapt analytics to
relaxed hardware

Whole-stack approach

3

analytics layout renderingstreaming data database

adapt computation: parallelize, incrementalize, approximate

Adaptation to adversity (reduce degradation)

When not keeping up, approximate!

Multi-resolution storage:
level of detail vs. read bandwidth

Multi-resolution visualization:
hide detail during interactive exploration

4

Adapting to opportunity (elevate performance)

Performance gains will come with strings attached.

Memory: denser but lossy.

Disks: high-capacity but append-only.

Processors: relaxed but non-intuitive.

File systems: fast but not crash resilient.

Parallelism: massive but restrictive.

Exploiting these imperfect systems will require
adaptation of algorithms, software, interfaces.

5

New platforms adapt to new hardware

analytics layout renderingstreaming data database

cachesfile system

CASPER adapts SW to new platforms

Idea: use verified lifting to infer high-level summary from existing code

Re-target inferred summary to parallel processing frameworks (Hadoop)

behavioral
specification

in
fe

re
nc

e

com
pilatio

n

adaptation

Specification language

out = reduce(f
r
, map(f

m
, in))

f
m
(e) { k=E; v=E; emit(k,v); }

E := e.f | N | E op E | f(E) | …

Similarly for f
r

[Maaz Bin Safeer Ahmad, Alvin Cheung. SYNT 2016. Best Paper]

MemSynth: Synthesis of Memory Models

8

Automatic inference + synthesis with Rosette

sp
eci
fic
ati
on

original
implementation

new
implementatio
n

infere

nce

synthe
sis

do
m
ai
n-
sp
eci
fic
la
ng
ua
ge
for
sp
eci
fic
ati
on
s

human expert designs
the spec language

Rosette performs
inference and synthesis

M
em

S
yn

t

C
ra

sh

C
on

si
st

en
cy

V
is

ua
l L

ay
ou

t

B
P

G
 V

er
fie

r

2.0

Selected recent papers

10

file system caches

analytics layout renderingstreaming data database

Leveraging Parallel Data Processing
Frameworks with Verified Lifting. Maaz Bin
Safeer Ahmad and Alvin Cheung. SYNT 2016.

Specifying and Checking File System
Crash-Consistency Models, James Bornholt,
Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi
Wang. ASPLOS 2016.

Fast Synthesis of Fast Collections.
Calvin Loncaric, Emina Torlak and
Michael D. Ernst. PLDI 2016.

High-Density Image Storage Using
Approximate Memory Cells, Qing Guo,
Karin Strauss, Luis Ceze, Henrique
Malvar. ASPLOS 2016.

Verified Lifting of Stencil Computations.
Kamil Shoaib, Alvin Cheung, Shachar
Itzhaky, Armando Solar-Lezama. PLDI 2016

Optimizing Synthesis with Metasketches.
James Bornholt, Emina Torlak, Dan
Grossman, and Luis Ceze. POPL 2016.

Staccato: A Bug-Finder for Dynamic Configuration Updates,
John Toman and Dan Grossman. ECOOP 2016. checking repair

http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/cozy.pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Cheung-Shoaib-pldi-2016.pdf
http://sandcat.cs.washington.edu/web/papers/synapse-popl16.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf

Sand Cat publications (Jan – July 2016)

1. Packet Transactions: High-level Programming for Line-Rate
Switches. Anirudh Sivaraman, Mihai Budiu, Alvin Cheung,
Changhoon Kim, Steve Licking, George Varghese, Hari Balakrishnan,
Mohammad Alizadeh and Nick McKeown. SIGCOMM 2016.

2. Formal Semantics and Automated Verification for the Border
Gateway Protocol. Konstantin Weitz, Doug Woos, Emina Torlak,
Michael D. Ernst, Arvind Krishnamurthy and Zachary Tatlock. NetPL
2016.

3. Staccato: A Bug-Finder for Dynamic Configuration Updates.
John Toman and Dan Grossman. ECOOP 2016.

4. Automatic Generation of Oracles for Exceptional Behaviors.
Michael D. Ernst, Alberto Goffi, Alessandra Gorla and Mauro
Pezzè. ISSTA 2016.

5. Leveraging Parallel Data Processing Frameworks with Verified
Lifting. Maaz Bin Safeer Ahmad and Alvin Cheung. SYNT 2016.

6. Computer-Assisted Query Formulation. Alvin Cheung and Armando
Solar-Lezama. Foundations and Trends in Programming Languages,
Vol.3 No.3.

7. Compiling a Gesture Recognition Application for a Low-Power
Spatial Architecture. Phitchaya Mangpo Phothilimthana, Michael
Schuldt, and Rastislav Bodik. LCTES 2016.

8. Fast Synthesis of Fast Collections. Calvin Loncaric, Emina Torlak and
Michael D. Ernst. PLDI 2016.

9. Verified Lifting of Stencil Computations. Kamil Shoaib, Alvin
Cheung, Shachar Itzhaky, Armando Solar-Lezama. PLDI 2016.

10. Verified Peephole Optimizations for CompCert. Eric Mullen, Daryl
Zuniga, Zachary Tatlock and Dan Grossman. PLDI 2016.

11

11. Semantics for Locking Specifications. Michael D. Ernst, Damiano
Macedonio, Massimo Merro and Fausto Spoto. NFM 2016.

12. Locking discipline inference and checking. Michael D. Ernst, Alberto
Lovato, Damiano Macedonio, Fausto Spoto, and Javier Thaine. ICSE
2016.

13. High-Density Image Storage Using Approximate Memory Cells.
Qing Guo, Karin Strauss, Luis Ceze, Henrique Malvar. ASPLOS 2016.

14. Specifying and Checking File System Crash-Consistency Models.
James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. ASPLOS 2016.

15. Programming with models: writing statistical algorithms for general
model structures with NIMBLE. Perry de Valpine, Daniel Turek,
Christopher J. Paciorek, Clifford Anderson-Bergman, Duncan Temple
Lang, and Rastislav Bodik. Journal of Computational and Graphical
Statistics.

16. Debugging distributed systems: Challenges and options for
validation and debugging. Ivan Beschastnikh, Patty Wang, Yuriy
Brun, and Michael D. Ernst. ACM Queue March-April 2016.

17. Planning for Change in a Formal Verification of the Raft Consensus
Protocol. Doug Woos, James R. Wilcox, Steve Anton, Zachary
Tatlock, Michael D. Ernst, and Thomas Anderson. CPP 2016.

18. Optimizing Synthesis with Metasketches. James Bornholt, Emina
Torlak, Dan Grossman, and Luis Ceze. POPL 2016.

http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Sivaraman-sigcomm-2016.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/bagpipe-weitz-netpl16.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Toman-ecoop-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-issta-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-issta-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ahmad-synt-2016.pdf
http://www.nowpublishers.com/article/Details/PGL-018
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Mangpo-lctes-2016.pdf
http://sandcat.cs.washington.edu/web/papers/cozy.pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/Cheung-Shoaib-pldi-2016.pdf
http://sandcat.cs.washington.edu/web/papers/peek-mullen-pldi16.pdf
http://sandcat.cs.washington.edu/web/papers/locking-semantics-nfm2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-icse-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Guo-Ceze-asplos-2016.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/ferrite-asplos16.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/de%20Valpine-Bodik-jcgs-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/Ernst-ACMQueue-2016.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/raft-cpp16.pdf
http://sandcat.cs.washington.edu/web/papers/synapse-popl16.pdf

2. Crash
consistency
in relaxed FS.

storage

file system

1: Adapt to workload and parallelize.

CP1 and CP2

12

analytics layout renderingstreaming
data database

CP1: Adaptive Data Visualization

13

Dataset and visualization

Dataset candidate: network attack analysis

14
Mansmann et al, Visual Support for Analyzing Network Traffic and Intrusion Detection Events using
TreeMap and Graph Representations

Treemap of Financial Industry (NY Times)

15

http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html`

dataset transform

slider

transform data vis tree layout pixels

p=Dec 2007

http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html
http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html

Treemap of a democratic election

http://superconductor.github.io/superconductor video

JavaScript:
500 polling stations @ 25fps

SuperConductor (GPU):
95k polling stations @ 25fps

http://superconductor.github.io/superconductor
https://www.youtube.com/watch?v=H1aHul6UaV4&t=140
http://superconductor.github.io/superconductor

Perturbation and Adaptation

Perturbation: the “slider” generates exceedingly many
requests to redo analysis and visualization

Adaptation:
(1) drop requests
(2) approximate
(3) parallelize

Goal: Maintain desired slider frame rate (30ms), while
keeping approximation error low.

DAS

Lincoln test harness

layout engine

data tree

pixelssynthesisvisualization spec
deploy

intent: desired framerate
set the frame rate r

controller
overflow?

lower the resolution

shared file system

tim
ing

datasets
load

se
t d

es
ire

d
fr

am
e

ra
te

start/stop slider

select visualization

slider

requests

every r ms

Implementation in more detail

19

dataset transform1

slider

transform2 data vis tree layout pixels

p=Dec 2007

Logical view:

country

regions

polling stations
(actual data)

HBox

HBox

Leaf

VBox

VBox

Implementation:

dataset transform2 data vis tree layout pixels

slider

Computing the treemap layout

Treemap constraints:
▪ votes == c * width * height
▪ compute c to fill the whole canvas
▪ rectangles must be tightly packed

Layout constraints can be solved
but an attribute grammar is 100x faster

3-pass evaluation of the grammar:
1) top-down: pass p to leaves

at leaves, transform the data
2) bottom-up: some up votes

at root, compute the constant c
3) top-down: divide the canvas, compute x,y,w,h

Synthesis of grammar evaluation schedule

post {
 Root:Top { }
 HBox:HVBox { ..., self.width, self.height } ;;
 VBox:HVBox { ..., self.width, self.height }
 Leaf:HVBox { self.width, self.height }
}

21

Definition of the schedule DSL
(an interpreter)

Layout constraints
(attribute grammar)

pre {
 Root:Top { root.right, root.bottom }
 HBox:HVBox { [childs.right, childs.bottom] }
 VBox:HVBox { [childs.right, childs.bottom] }
 Leaf:HVBox { }
}

Grammar evaluator
(schedule DSL program)

See Nate Yazdani’s poster on scalable synthesis of grammar evaluators

Adaptive evaluation

Lower-resolution visualization
by summarizing subtrees.

Restore detail after the slider
stops.

For this we need: more expressive schedule language primitives,
eg

“traverse just a subtree” rather than “traverse entire tree”

currently working on these data-dependent parallel trasversals

2. Crash
consistency
in relaxed FS.

storage

file system

1: Adapt to workload and parallelize.

CP1 and CP2

23

analytics layout renderingstreaming
data database

Changes & adaptations in the storage stack

Application

File System

Adapt app to
FS changes

Adapt FS to
HW changes

Progress update

This phase: adapt applications to FS changes
– Main result: crash consistency model [ASPLOS’16]

– Formally define what POSIX file systems guarantee

– A basis for building & adapting crash-safe applications

Next: adapt FS to hardware changes
– Highly automated push-button verification

– Yxv6: a verified journaling file system

– A basis for FS adaptations

25

Adaptation via automated formal verification

Step 1:
Automated
verification

Step 2:
Propose an
adaptation

Adapt applications to FS changes

• The POSIX interface
– open, close, read, write, rename, …

– largely silent on crash guarantees

• Many FS implementations
– ext4, btrfs, f2fs, ufs2, …

– different semantics: performance vs. persistence

• Problem: hard to adapt applications to a new FS

• Idea: crash consistency models

27

Application

File System

An overview of adaptation

Library requirements
– Correctness: insert sync if needed

– Performance: minimize sync

28

Application

FS
0

Library
0

Application

FS
1

Library
1

Change

Adapt

Replacing the contents of a file

29

foo.txtfoo.txtfoo.txt
The best of times
The worst of times

The age of wisdom
The epoch of belief

Atomic replace via rename

30

foo.tmpfoo.txtfoo.txt f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom
The epoch of belief

Atomic replace via rename

create(“foo.tmp”)

write(f, “The age of …”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

File operations Writes

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

Atomic replace via rename

32

create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt
The best of times
The worst of times

Crash!

Crash-consistency models

33

Litmus tests Formal specifications

Small programs that demonstrate
allowed or forbidden behaviors of a
file system across crashes

Axiomatic descriptions of crash
consistency using first order logic

Documentation for application
developers

Automated reasoning about crash
safety

Litmus tests

• Small programs that demonstrate allowed or forbidden
behaviors of a file system across crashes

Prefix append

ext4 Unsafe

xfs Safe

f2fs Unsafe

nilfs2 Safe

btrfs Safe

ufs2 Unsafe

File system

We suspect that most modern
filesystems exhibit the safe
append property.

SQLite Atomic Commit documentation

ext4 crash consistency

• ext4 allows traces that
respect ordering of:

– Same-file metadata

– Same-block writes

– Same-dir operations

– Write-append pairs

35

Building models with Ferrite

36

Litmus tests

File System
(via QEMU)Ferrite

System calls

Disk commands
Correlate system
calls and disk
commands;
generate possible
crash outcomes

Adapting crash consistency

37

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

Adapting crash consistency

38

fsync(f)
f = create(“file.tmp”)
fsync(f)
write(f, new)
fsync(f)
close(f)
fsync(f)
rename(“file.tmp”, “file”)
fsync(f)

Adapting crash consistency

39

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

content(“file”) == old
|| content(“file”) == new

Program
Crash-consistency
model

 Synthesizer

Spec

Crash-safe program

Summary of adapting apps to FS changes

• Hard for developers to understand FS guarantees

• Crash consistency models
– A formal specification of crash consistency

– Much like a memory model

• Ferrite: support for discovering crash consistency of a
file system

• Synthesis to adapt apps to new crash consistency

40

Test integration

41

Intent: desired FS model control

engine

Lincoln test harness

set desired FS model start/stop adaptation

synthesisspec

new libraryold library

load

Future work: adapting FS to HW changes

• Step 1: FS verification

• Step 2: FS adaptation

42

File System

Challenges in FS verification

• Complex on-disk data structures
– Disk can reorder writes due to caching

– Programs can crash at any point

• State of the art
– Model checking: eXplode [OSDI’06]

– Manual proofs: FSCQ [SOSP’15], Cogent [ASPLOS’16]

43

Idea: push-button verification for FS

• Co-design a file system with verification

• Goal: no proofs
– Programmers write spec, impl, fsck invariants

– No loop invariants nor annotations on code

• Fully automated SMT reasoning
– Can be considered as exhaustive symbolic execution

– Achieve scalability by layered composition

– Get rid of unbounded loops via translation validation

Current results

• Yxv6: a verified journaling file system
– Similar to xv6 FS/FSCQ/ext3

– Written in Python/Z3

– compiled to C for execution

• Push-button verification for Yxv6
– ~300 LOC spec & ~3,000 LOC impl.

– Little proof burden: 5 fsck invariants

– No low-level bugs & all paths exhausted

– Functional correctness & crash safety

Looking forward: FS adaptations

• Verification provides a basis for adaptation

• A simple example: minimize disk flushes
– Try to remove every flush & re-verify

– Adapt to battery-backed disks

• Future disks with non-traditional API
– SCSI upcoming standard for atomic scattered writes

– Shingled magnetic recording, persistent memory

46

Summary of CP2

• Adapt applications for file system changes
– File system crash consistency models & tools

– Application adaptation

• Future work
– Adapt FS to HW changes

– Push-button verification: a basis for FS adaptation

47

